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Abstract

Categorical sensory representations are critical for many behaviors, including speech
perception. In the auditory system, categorical information is thought to arise hierarchically,
becoming increasingly prominent in higher order cortical regions. The neural mechanisms
that support this robust and flexible computation remain poorly understood. Here, we
studied sound representations in primary and non-primary auditory cortex while animals
engaged in a challenging sound discrimination task. Population-level decoding of
simultaneously recorded single neurons revealed that task engagement caused categorical
sound representations to emerge in non-primary auditory cortex. In primary auditory cortex,
task engagement caused a general enhancement of sound decoding that was not specific to
task-relevant categories. These findings are consistent with mixed selectivity models of
neural disentanglement, in which early sensory regions build an overcomplete
representation of the world and allow neurons in downstream brain regions to flexibly and
selectively read out behaviorally relevant, categorical information.

eLife assessment

This important study provides insights into how the brain constructs categorical
neural representations during a difficult auditory target detection task. Through
recordings of simultaneous single-unit activity in primary and secondary auditory
areas, compelling evidence is provided that categorical neural representations
emerge in a secondary auditory area, i.e., PEG. The study is of interest to
neuroscientists and can also potentially shed light on human psychological studies.

https://doi.org/10.7554/eLife.89936.2.sa2

Introduction

Perceptual decision making requires behavioral responses based on specific sensory patterns that
ignore distracting and irrelevant information. In the auditory system, categorical sensory
representation is essential to many natural behaviors (Bizley and Cohen, 2013     ). For example,
during language processing, vowels are perceived categorically, even though the formant
frequencies that define them vary continuously across utterances (Hillenbrand et al., 1995     ).
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Categorical perception is not limited to language, as subjects can learn to classify arbitrary, novel
sounds according to one spectro-temporal feature while ignoring others (Stilp and Kluender,
2010     ).

Neurophysiological studies in auditory cortex have shown that engaging in auditory behavior can
enhance sensory discriminability at the level of single neurons (Buran et al., 2014     ; Niwa et al.,
2012a     ) and neural populations (Bagur et al., 2018     ; Kuchibhotla et al., 2017     ). Most of this
work has demonstrated a generalized, overall improvement in sensory coding without contrasting
neural representations of task-relevant versus -irrelevant features. In frontal cortex, neurons
often only encode sound category (Fritz et al., 2010     ; Tsunada et al., 2011     ), suggesting that
sound information is transformed into an invariant, categorical representation before exiting
auditory cortex. Such representations require disentangling sensory features that are relevant for
defining the object category from other features that are irrelevant to the category (DiCarlo and
Cox, 2007     ). Theory predicts that neural systems can produce these invariant representations
through hierarchical computation. In early processing regions, mixed selectivity of single neurons
produces high-dimensional, overcomplete representations of sensory inputs and behavioral
variables. From this population activity, it is straightforward for neurons in downstream areas to
decode information about a specific feature that is important to the current behavior and whose
representation is invariant to irrelevant sensory information (Kell et al., 2018     ; Rigotti et al.,
2013     ).

We hypothesized that invariant auditory representations supporting perceptual discrimination
arise through a behavior-dependent hierarchical process, consistent with mixed selectivity
models. According to this model, engaging in an auditory behavior leads to a non-specific
enhancement of auditory representations at early stages, followed by a selective enhancement of
task-relevant features at later stages. Previous work has shown that effects of task engagement are
larger in non-primary auditory fields (Atiani et al., 2014     ; Kline et al., 2023     ; Niwa et al., 2013     ),
as are the effects of selective attention, which may be related to invariant sound feature coding
(O’Sullivan et al., 2019     ). Some studies have also reported that choice related activity emerges in
non-primary auditory cortex during a challenging perceptual discrimination behavior (Tsunada et
al., 2015     ), although factors affecting choice coding may be task dependent (Bizley et al., 2013     ).
Together, these findings are consistent with the idea that behaviorally relevant neural
representations are computed hierarchically in auditory cortex (Lestang et al., 2023     ).

To investigate the emergence of invariant sound coding, we recorded neural population activity
from primary and non-primary fields of ferret auditory cortex while animals alternated between
active tone-in-noise detection and passive listening to task stimuli. We designed the task so that
behavioral sessions contained multiple different target and distractor sounds and used decoding
analysis to measure how neural populations discriminate between both task-relevant and -
irrelevant sound features. For this analysis, we developed decoding-based dimensionality
reduction (dDR), which projects neural activity into a low-dimensional subspace spanning both
changes in mean firing rate between categories and covariability across trials (Heller and David,
2022     ) dDR prevents bias that can affect population decoding in behavioral studies with
relatively limited numbers of trials (Kanitscheider et al., 2015     ; Moreno-Bote et al., 2014     ).
Effects of task engagement were highly variable across individual neurons, but the population-
level analysis revealed that sound coding in primary auditory cortex was broadly and non-
specifically improved by task engagement. In contrast, an enhanced, selective representation of
task-relevant features emerged in non-primary auditory cortex. The degree of task-relevant
enhancement was correlated with behavioral performance, consistent with the hypothesis that
categorical representations in non-primary auditory cortex inform behavioral choices.

https://doi.org/10.7554/eLife.89936.2
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Results

Psychometric tone-in-noise detection behavior
To study how neural representations of sound category emerge in auditory cortex, we trained four
ferrets to perform a go/no-go tone-in-noise detection task. Animals reported the occurrence of a
target tone in a sequence of narrowband noise distractors by licking a piezo spout (Figure 1A     ,
Methods: Behavioral paradigm, distractor stimulus sound level: 60 dB SPL). Targets were
presented with variable signal-to-noise ratio (SNR), masked by noise centered at the same
frequency. We describe SNR as the overall SPL of the target relative to distractor noise level. Thus,
an SNR of –5 dB corresponds to a target level of 55 dB SPL while an Inf dB SNR corresponds to a
target tone presented without any masking noise. A subset of behavioral trials in each experiment
included an explicit catch stimulus whose center frequency was matched to that of the target tone.
This task design permitted us to probe neural coding of both task-relevant sound features
(presence or absence of a target tone) and -irrelevant features (level of noise masking the target
tone, Figure 1C     ).

Behavioral performance was measured using d-prime (Green and Swets, 1966     ; Saderi et al.,
2021     ), calculated as the z-scored hit rate for a given target minus the z-scored catch response
rate. Across behavioral sessions and animals, performance showed a clear psychometric
dependence on target SNR (Figure 1B     , Figure 1 – figure supplement 1). All animals could easily
discriminate between the pure tone (Inf dB) target and catch stimulus, while performance for
lower SNR target stimuli approached chance level.

Diverse effects of task engagement on single
neurons in primary and non-primary auditory corte
We used linear 64-channel silicon probes (Shobe et al., 2015     ) to record single unit activity from
primary (A1) and non-primary (dPEG) auditory cortex while animals performed the tone-in-noise
detection task. Recordings were targeted to each respective region based on functional mapping of
neural responses (Methods, Figure 2 – figure supplement 1). Behavior alternated between blocks
of active task engagement and passive listening to task stimuli. During passive listening, licking
responses were not rewarded and animals quickly disengaged from the task (David et al., 2012     ).

Sound-evoked spiking activity was compared between active and passive states to study the
impact of task engagement on sound representation. In both A1 and dPEG, responses to target and
catch stimuli were significantly discriminable for a subset of single neurons (about 25% in both
areas, Figure 2A-C     , Figure 2 – figure supplements 2-4, bootstrap test). This supports the idea that
stimulus identity can be decoded in both brain regions, regardless of task performance. However,
the fact that the responses of most neurons in both brain areas could not significantly discriminate
target vs. catch stimuli also highlights the diversity of sound encoding observed at the level of
single neurons. The accuracy of catch vs. target discrimination for each neuron was quantified
using neural d-prime, the z-scored difference in target minus catch spiking response for each
neuron (Methods: Single neuron PSTHs and d-prime (Niwa et al., 2012a     )). Task engagement was
associated with significant changes in catch vs. target d-prime for roughly 10% of neurons in both
A1 (40 / 481 neurons, bootstrap test) and dPEG (33 / 377 neurons, bootstrap test). This included
neurons that both increased their discriminability and decreased their discriminability (Figure
2D-E     ). Thus, the effects of task engagement at the level of single neurons were relatively mild
and inconsistent across the population; many neurons showed no significant change and of those
that did, effects were bidirectional (Figure 2D-E     ).

https://doi.org/10.7554/eLife.89936.2
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Figure 1

Tone-in-noise detection behavior.

a. Schematic of go/no-go tone-in-noise detection task. Licking responses to target tones were rewarded, while responses to
narrowband noise distractors were penalized with a timeout. Target tone frequency was fixed during a single behavior
session and masked by narrowband (0.3 octave) noise centered at the same frequency with variable signal-to-noise ratio
(SNR). Variable SNR was achieved by varying overall SPL of the target relative to the fixed (60 dB SPL) distractor noise, e.g., -5
dB SNR corresponds to a 55 dB SPL target with 60 dB SPL masking noise. Infinite (inf) dB SNR corresponds to a target tone
presented in isolation (60 dB SPL). The “Catch” distractor was identical to the masking noise but with no tone. b. Behavioral
performance of individual animals as a function of SNR (d-prime = Z[target response rate] - Z[catch response rate], n = 4
animals). Black line and error bars indicate the mean and standard error of the mean across animals. c. Left: Stimulus set for
an example experiment where the target tone frequency was 2828 Hz. Right: both task relevant (catch vs. target) and task
irrelevant (target vs. target, distractor vs. distractor) sound discriminations were studied.

https://doi.org/10.7554/eLife.89936.2
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Figure 2

State-dependent modulation of single neuron target vs. catch discrimination.

a. Example peristimulus time histogram (PSTH) responses from a single recording site in A1. Heatmap color in each row
indicates PSTH amplitude of one neuron. Dashed lines indicate sound onset / offset. Spikes were binned (20 ms), z-scored,
and smoothed (σ = 30 ms Gaussian kernel). Example target responses are to the pure tone (Inf dB) target. Difference is
computed as the z-scored response to the target minus the z-scored catch response (resulting in a difference shown in units
of z-score). b-c. Mean z-scored response evoked by catch vs. Inf dB stimulus for each A1 neuron (n=481 neurons) across
passive (b) and active (c) trials. Responses were defined as the total number of spikes recorded during the 300 ms of sound
presentation (area between dashed lines in panel A). Neurons with a significantly different response to the catch vs. target
stimulus are indicated in black and quantified on the respective figure panel. d. Histogram plots state-dependent change in
target vs. catch stimulus discriminability for each A1 neuron. Neural d-prime is defined |Z[target] - Z[catch]|, and Δd-prime is
the difference of active minus passive d-prime. The distribution of neurons with a significant change in d-prime between
passive and active conditions is overlaid in black. e. Histogram of Δd-prime for dPEG neurons, plotted as in D.

https://doi.org/10.7554/eLife.89936.2
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Population coding of task-relevant features is
selectively enhanced in non-primary auditory cortex
Given the diversity of task-related changes in neural activity, we asked if a clearer pattern of task-
dependent changes could be observed at the population level. We performed optimal linear
decoding of task stimuli from the single-trial activity of simultaneously recorded neurons at each
recording site. We quantified decoding performance with neural population d-prime (Methods:
Neural population d-prime (Abbott and Dayan, 1999     ; Niwa et al., 2012a     )). To prevent
overfitting and allow visualization of population responses, we first projected single trial activity
into a low dimensional subspace optimized for linear decoding of task stimuli (Figure 3      (Heller
and David, 2022     )). In both A1 and dPEG, population d-prime for catch versus target stimuli
consistently increased during task engagement. In A1, the increase in d-prime was consistent
across all task categories; there was no difference between target vs. target and target vs. catch
discrimination accuracy (Figure 3B-C     ). However, in dPEG the improvement of task-relevant
catch vs. target discrimination was significantly larger than any other category (Figure 3E-F     ).
Unlike A1, discrimination of task-relevant sound categories was selectively enhanced in non-
primary auditory cortex.

Prior work has demonstrated that generalized, pupil-indexed arousal can impact the responses of
neurons in auditory cortex, independent of engagement in a specific task (McGinley et al., 2015     ;
Schwartz et al., 2020     ). Importantly, task engagement is often correlated with increased arousal
(de Gee et al., 2022     ; Saderi et al., 2021     ) (Figure 3 – figure supplement 1). To ensure that our
results were not influenced by non-specific effects of arousal, decoding analysis was performed
after first removing all spiking variability that could be explained using pupil-indexed arousal
(Methods). Performing the same decoding analysis without first controlling for pupil size did not
affect the selective enhancement that we observed in dPEG (Figure 3 – figure supplement 2).
However, Δ d-prime, in both A1 and dPEG, was higher overall. The absence of a pupil effect on
selectivity suggests that pupil-indexed arousal primarily operates on an orthogonal subspace to
the global task engagement axis and tends to non-specifically improve coding accuracy.

In addition to reflecting overall arousal level, pupil size has also been reported to reflect more
nuanced cognitive variables such as, for example, listening effort (Zekveld et al., 2014     ).
Furthermore, rodent data suggests that optimal sensory detection is associated with intermediate
pupil size (McGinley et al., 2015     ), consistent with the hypothesis of an inverted-U relationship
between arousal and behavioral performance (Zekveld et al., 2014     ). To determine if this pattern
was true for the animals in our task, we measured the dynamics of pupil size in the context of
behavioral performance. Across animals, task stimuli evoked robust pupil dilation that varied with
trial outcome (Figure 3 – figure supplement 1b-c). Notably, pre-trial pupil size was significantly
different between correct (hit and correct reject), hit, and miss trials (Figure 3 – figure supplement
1b-c), recapitulating the finding of an inverted-U relationship to performance in rodents (McGinley
et al., 2015     ). Since we focused only on correct trials in our decoding analysis, these outcome-
dependent differences in pupil size are unlikely to contribute to the emergent decoding selectivity
in dPEG.

Behavioral performance is correlated with neural
coding changes in non-primary auditory cortex only
If task-related changes in neural coding are linked to processes that guide behavior, then the
changes in neural activity should be predictive of behavioral performance (Tsunada et al.,
2015     ). While selective enhancement of task-relevant discriminability was observed only in
dPEG, both areas showed an overall increase in sensory discriminability. We asked if either of
these changes in neural decoding performance were predictive of behavioral performance. For

https://doi.org/10.7554/eLife.89936.2
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Figure 3

Selective enhancement of task-relevant category representation in secondary auditory cortex.

a. Left: Representative A1 population activity during passive listening projected into a 2-dimensional space optimized for
discriminating target versus catch responses. Each dot indicates the population response on a single trial, color indicates
different noise (catch) or tone-in-noise (target) stimuli, and ellipses describe the standard deviation of responses across trials.
The degree of ellipse overlap provides a visualization of the neural discriminability (d-prime) between the corresponding
stimuli. Right: A1 population activity during active behavior. b. Mean population d-prime between sounds from each category
(target vs. catch, target vs. target, and distractor vs. distractor, Figure 1C     ) for each A1 recording site (n = 18 sessions, n = 3
animals). c. Δd-prime is the difference between active and passive d-prime, normalized by their sum (D vs. D / T vs. T p =
0.048, Wilcoxon signed rank test). d. Single-trial population responses for a single site in non-primary auditory cortex (dPEG),
plotted as in A. e. Passive vs. Active category discriminability for dPEG recording sites, plotted as in B (n = 12 sessions, n = 4
animals). f. Changes in discriminability per category in dPEG. Δd-prime for target vs. catch pairs (T vs. C) was significantly
greater than for the other categories (D vs. D: p = 0.003; T vs. T: p = 0.005, Wilcoxon signed rank test).

https://doi.org/10.7554/eLife.89936.2
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each tone-in-noise target stimulus, we compared the task-related change in neural d-prime to
behavioral d-prime in the same experiment. We found a significant correlation for populations in
dPEG, but not in A1 (Figure 4     ). Thus, the task-specific changes in dPEG are coupled with the
behavioral output reflecting those sound features.

The previous analysis suggests that the task-dependent increase in stimulus information present
in dPEG population activity is predictive of overall task performance. Next, we asked whether the
population activity in either brain region was directly predictive of behavioral choice on single hit
vs. miss trials. To do this, we conducted a choice probability analysis (Methods). We found that in
both brain regions choice could be decoded well above chance level (Figure 4 – figure supplement
1). Choice information was present throughout the entire trial and did not increase during the
target stimulus presentation. This suggests that the difference in population activity primarily
reflects a cognitive state associated with the probability of licking on a given trial, or “impulsivity”
rather than “choice.” This interpretation is consistent with our finding that baseline pupil size on
each trial is predictive of trial outcome (Figure 3 – figure supplement 1b).

Changes in evoked response gain, not shared population
covariability, support the emergence of categorical
representations in non-primary auditory cortex
The difference in task-dependent coding between A1 and dPEG could be explained by differential
changes in the evoked responses of single neurons, patterns of covariability between neurons, or
both (Cohen and Maunsell, 2009     ; Cowley et al., 2020     ). To measure task-dependent changes in
covariability, we used Factor Analysis to model low-dimensional correlated activity in the neural
population (Methods: Factor Analysis). We found that covariability patterns changed significantly
between the passive and active state (Figure 5 – figure supplement 1). In both brain regions, task
engagement caused a rotation of the principal covariability axis, consistent with an overall
decorrelation of population activity (Umakantha et al., 2021     ). In theory, a rotation could either
help, or hurt, decoding accuracy, depending on its alignment with the sound discrimination axis
(Figure 5A     ). Therefore, we measured the alignment of population covariability with the sound
discrimination axis in both passive and task engaged states (Figure 5B     ). Surprisingly, in A1, task
engagement caused covariability to become more aligned with the sound discrimination axis.
These results are consistent with a model in which the principal covariability axis does not
represent information limiting noise in early sensory areas (Kafashan et al., 2021     ), but instead
reflects top-down, task-dependent gain modulation becoming more aligned with the task-relevant
coding axis (Denfield et al., 2018     ; Goris et al., 2014     ; Rabinowitz et al., 2015     ). Conversely, in
dPEG alignment was low in both the passive and engaged states, consistent with covariability
reflecting non-sensory variables that do not directly interact with processing of the sensory
stimulus (Stringer et al., 2019a     ).

To directly measure how these population-level changes relate to sound representation and
emergent behavioral selectivity in non-primary auditory cortex, we performed simulations based
on Factor Analysis model fits in which we sequentially introduced task-dependent changes in
mean sound evoked response gain, single neuron variance, and population covariance matching
changes in the actual neural data (Methods: Factor Analysis – Simulations). A simulation in which
population covariability was fixed and only the evoked response gain changed between passive
and active conditions (gain only) was sufficient to produce task-relevant selectivity in non-primary
auditory cortex (Figure 5C-D     ). Thus, task-dependent changes in evoked response gain, not
population covariability, support the emergence of a behaviorally relevant population code in
non-primary auditory cortex.

This result is consistent with the fact that population covariability did not change in a systematic
way with respect to the sound discrimination axis in non-primary auditory cortex (Figure 5B     ).
However, in A1 this was not the case. Therefore, we hypothesized that in A1 modeling changes in

https://doi.org/10.7554/eLife.89936.2
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Figure 4.

Changes in neural decoding are correlated with behavior performance in dPEG, but not A1.

a. Scatter plot compares neural Δd-prime (active minus passive) for all tone-in-noise target vs. catch noise combinations
against the corresponding behavioral d-prime for that target vs. catch discrimination. Line shows the best linear fit, and
shading represents bootstrapped 95% confidence interval for slope. Left, data from A1 (n = 60 unique target vs. catch
combinations, n = 3 animals, 18 recording sessions). Right, data from dPEG (n = 44 unique target vs. catch combinations, n = 4
animals, 12 recording sessions). b. Pearson correlation between neural d-prime and behavioral d-prime in each brain region.
Error bars indicate bootstrapped 95% confidence intervals (A1: p = 0.082; dPEG: p = 0.002, bootstrap test).

https://doi.org/10.7554/eLife.89936.2
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Figure 5

Task-related changes in shared population covariability
do not impact coding of task-relevant features.

a. Schematic of population response over many trials to a catch stimulus (grey) and target stimulus (red), projected into a
low-dimensional space. Dashed line indicates the sensory discrimination axis and grey line indicates the axis of shared
variability across trials during passive listening. Black lines indicate possible rotations in the axis of shared variability either
toward or away from the discrimination axis during the task-engaged state. A larger angle (8) between the shared variability
and the discrimination axes leads to increased discrimination accuracy. b. Alignment (cosine similarity) between the
discrimination and shared variability axes during passive and active conditions. Error bars represent standard error of the
mean. The axes become more aligned during task engagement in A1 (p < 0.001, Wilcoxon signed-rank test) and do not
change in dPEG. c. Mean selective enhancement of neural target vs. catch discriminability across recording sites for
simulated and actual data. Selective enhancement is the difference in Δd-prime for target vs. catch and target vs. target
(inset). Simulations sequentially introduced task-dependent changes in mean sound evoked response gain, single neuron
variance, and population covariance matching changes in the actual neural data. d. Model performance, defined as the
correlation coefficient between simulated and actual selective enhancement. Performance of each model was evaluated
against the performance of the shared variance model to check for stepwise improvements in predictions. Stars indicate
significance at alpha = 0.05 level, bootstrap test. Colors indicate brain regions: dPEG / black, A1 / grey.

https://doi.org/10.7554/eLife.89936.2
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covariability would be required to explain the observed task-dependent changes in generalized
sound discriminability. Indeed, we observed monotonic improvement in the model’s ability to
predict overall Δd-prime in A1, confirming that the shared variability model captured real aspects
of shared population covariability that contribute to the accuracy of sound representation in A1
(Figure 5 – figure supplement 2).

Finally, we used the same simulation approach to determine what aspects of population activity
carry the “choice” related information we observed in A1 and dPEG (Figure 4 – figure supplement
1). Similar to our findings for stimulus decoding, we found that gain modulation alone was
sufficient to recapitulate the choice information present in the raw data for this task. This helps
frame prior work that pooled neurons across sessions to study population coding of choice in
similar auditory discrimination tasks (Christison-Lagay et al., 2017     ).

Discussion

We observed distinct changes in how neural populations represent sound categories between
primary (A1) and non-primary (dPEG) auditory cortex during a challenging tone-in-noise task. In
A1, task engagement improved neural coding uniformly across all sound categories, both relevant
and irrelevant to the current task. In dPEG, on the other hand, the neural population selectively
enhanced the representation only of sound categories relevant to the tone-in-noise behavior. Task-
dependent changes in neural response gain were sufficient to account for this emergent selectivity.
In addition, we observed striking changes in population level correlated activity that were
strongly dependent on brain region. The pattern of task-related effects is consistent with a
hierarchical, mixed selectivity model of sensory decision-making (Rigotti et al., 2013     ). Neural
populations in early brain areas form a sparse, overcomplete representation of sensory inputs,
which supports a simple linear readout of task-relevant features in downstream areas. The
selective changes are measurable only at the population level in dPEG, but a subsequent stage of
processing would support category-specific coding by single neurons, as in frontal cortex (Fritz et
al., 2010     ; Tsunada et al., 2011     ).

Emergent invariant, behaviorally relevant sound
representations in non-primary auditory cortex
It has been proposed that auditory cortex dynamically computes representations of task-relevant
sound features from non-specific spectro-temporal inputs to A1 (Lestang et al., 2023     ). Prior
work has established that task-dependent modulation of auditory responses is larger in non-
primary versus primary fields of auditory cortex (Atiani et al., 2014     ; Kline et al., 2023     ; Niwa et
al., 2013     ). In our study, we asked how specific these changes in neural activity are to the
encoding of task-relevant vs. irrelevant sound features. We found a clear dissociation between
cortical fields; behaviorally relevant representations first emerged in the non-primary field, dPEG.
In the frontal cortex (FC) of ferrets engaged in a similar tone detection behavior, single neuron
activity is behaviorally gated. Responses to a set of target tones are strongly enhanced when they
require a behavioral response (Fritz et al., 2010     ). In our task, the enhanced category
representation in dPEG supports a simple linear readout of “go” versus “no-go” categories that
could provide input to category-specific neurons in FC.

Consistent with the hypothesis that the selective enhancement of category representation is
causally related to behavior, we found that decoding accuracy in dPEG tracked the animal’s
behavioral performance. This correlation between neural activity and behavioral performance is
consistent with previous observations that choice related activity is present or is stronger in non-
primary versus primary auditory cortex (Bizley et al., 2013     ; Tsunada et al., 2015     ). However,
some other studies have reported choice related activity emerging as early as A1 (Niwa et al.,
2012b     ; Selezneva et al., 2006     ), suggesting that the role of different cortical regions in decision
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making may depend on aspects of the task, including the specifics of the auditory stimuli and the
associated motor response. Future studies that precisely stimulate or suppress activity along the
auditory pathway may definitively probe the causal role that each region plays in auditory
perception.

Population activity reveals hierarchically
organized representations in the auditory system
Despite the diverse task-dependent changes in sound representations across individual neurons,
analysis of sound discriminability at the population level revealed striking qualitative differences
between A1 and dPEG. This finding highlights the value of studying auditory coding at the level of
neural populations, which provides a more complete assessment of system-wide function than
individual neurons (Bagur et al., 2018     ; Lestang et al., 2023     ). In our analysis, we defined
population coding accuracy as the amount of stimulus information an ideal observer could extract
from simultaneously recorded population activity. Thus, our results should be interpreted as an
upper bound on the information transmitted by a group of neurons about a particular stimulus.
Critically, these measures do not necessarily reflect the information utilized by the animal. In A1,
for example, we found a decoding axis for every stimulus category along which task engagement
improved sound representation. Despite this global improvement in A1, decoding downstream in
dPEG was only improved for task-relevant sounds. This selective change indicates that dPEG does
not always read out information optimally from A1. Instead, during the engaged state, it reads out
activity along an axis of A1 population activity that is invariant to task-irrelevant stimuli.

At face value, these findings may seem paradoxical. If only one dimension of A1 activity is utilized
downstream, why does task engagement improve sound representations so broadly? Theories of
neural disentanglement and formation of categorical representations posit that the brain must
first build overcomplete, high-dimensional representations of the sensory world (DiCarlo and Cox,
2007     ). From this high-dimensional activity, it is straightforward to build a linear decoder, tuned
to the task at hand, that extracts only task-relevant information (Rigotti et al., 2013     ). Our
findings are consistent with this theory and describe a hierarchical network for computing sound
category. An overcomplete representation in A1 is selectively filtered at the population level in
dPEG, and subsequently this activity may provide input to category-specific neurons in areas such
as FC.

Implications for the role of correlated
actisuvity in sensory processing
An important advantage of our experimental setup was that we simultaneously recorded the
activity of populations of neurons, contrasting with previous studies that built pseudo-populations
from serial experiments (Bagur et al., 2018     ). This approach allowed us to investigate how trial-
by-trial covariability across the population depends on task engagement and contributes to sound
encoding. Theoretical work has shown that trial-by-trial covariance can impair population coding
accuracy (Averbeck et al., 2006     ). Early experiments in visual cortex supported this idea,
demonstrating that selective attention improves perceptual discriminations primarily by reducing
covariance (Cohen and Maunsell, 2009     ). We found task engagement modulated covariability
patterns in both A1 and dPEG, broadly consistent with prior work in the auditory system (Downer
et al., 2017     ).

Strikingly, however, the changes in covariance had no impact on emergent behavioral selectivity
in dPEG or on the mean generalized improvement in sound coding in A1. What, then, do these
changes in correlated neural activity reflect? In A1, we found that covariability became more
aligned with the behaviorally relevant sensory decoding axis during task engagement. This finding
is in opposition to a model in which covariability reflects information limiting noise (Bartolo et al.,
2020     ; Moreno-Bote et al., 2014     ; Rumyantsev et al., 2020     ). Instead, we hypothesize that
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covariability in A1 primarily reflects top-down gain modulation that drives changes in selectivity
(Denfield et al., 2018     ; Goris et al., 2014     ; Guo et al., 2017     ). During the task-engaged state, top-
down signals selectively modulate sound evoked responses of neurons tuned to task-relevant
stimuli, thus boosting the representation of task-relevant sounds for downstream readout. If gain
is not perfectly static, but varies in strength from trial to trial, this could explain the observed
increase in covariability amongst task-relevant neurons (Denfield et al., 2018     ). Simultaneous
recordings from multiple auditory fields that permit analysis of the communication subspace
between areas may provide further insight into the interaction between top-down signals and
sound-evoked responses (Semedo et al., 2019     ; Srinath et al., 2021     ).

In contrast, the direction of covariability in dPEG changed randomly with respect to the
behaviorally relevant decoding axis. During both passive and engaged states, covariability
remained mostly orthogonal to the sensory decoding axis and therefore had little impact on
population decoding accuracy. These findings are consistent with recent work suggesting that
trial-by-trial covariability is primarily orthogonal to sensory coding dimensions and reflects non-
sensory motor or cognitive variables, such as whisking, running, or arousal (Musall et al., 2019     ;
Stringer et al., 2019b     ). Our results contribute to a growing body of evidence that covariability
does not usually reflect information limiting noise, but instead reflects important cognitive
processes active in different brain regions during sensory decision making (Srinath et al., 2021     ).

Methods

Surgical procedures
All procedures were approved by the Oregon Health and Science University Institutional Animal
Care and Use Committee (IACUC) and conform to the standard of the Association for Assessment
and Accreditation of Laboratory Animal Care (AAALAC). Adult male ferrets were acquired from an
animal supplier (Marshal Farms). To permit head fixation during neurophysiological recordings
and behavioral training, all animals underwent head-post implantation surgeries. Surgeries were
performed as described previously (Saderi et al., 2021     ; Slee and David, 2015     ). Two stainless
steel head-posts were fixed to the skull along the midline with bone cement (Palacos or Charisma).
Additionally, 8-10 stainless steel screws were inserted into the skull and bonded to the bone
cement to form the structure of the implant. After a two-week recovery period, animals were
slowly habituated to a head-fixed posture and auditory stimulation. Following behavioral training
on the tone-in-noise task (see below), a microcraniotomy (0.5-1mm) was opened above either
primary auditory cortex (A1) or the dorsal posterior ectosylvian gyrus (dPEG) to allow for
insertion of neurophysiology recording electrodes. Recording sites were targeted based on
external landmarks and tonotopic maps (Atiani et al., 2014     ; Bizley et al., 2005     ). After
recordings were complete at one location, the microcraniotomy was allowed to close and a new
one was opened at a different location.

Behavioral paradigm
Four adult male ferrets were trained on a positively reinforced, go/no-go tone-in-noise detection
task. Throughout behavioral training, animals were provided with free access to water on
weekends and placed on partial water restriction during the week. During restriction periods,
animals were only able to receive liquid rewards during behavioral training. Supplemental water
was provided after a training session, if necessary, to ensure that animals maintained at least 90%
of their baseline body weight throughout training.

Single behavioral trials consisted of a sequence of narrow band noise bursts (0.3 octave
bandwidth, 0.3 s duration, 0.2 s ISI), followed by a target tone (0.3 s duration). Animals reported
the presence of the target tone by licking a water spout. Licks were detected through a piezo
electric sensor glued to the spout (2 animals) or by a video camera monitoring the luminance
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change in a window around the spout (2 animals). Licks occurring during a target window (0.2-1.0
s following target onset) were rewarded with a high-protein, high-calorie supplement (Ensure),
while licks outside the window were penalized with a timeout (3 – 10 s). The number of distractor
stimuli per trial was distributed randomly with a flat hazard function to prevent behavioral
timing strategies. Each behavioral session consisted of 100 - 200 trials. A subset of trials contained
an explicit catch stimulus – a noise burst with the same center frequency as the target tone and
occurring with the same temporal distribution as targets. Trials containing a catch stimulus were
always concluded by a pure tone reminder target, which was rewarded if the animal successfully
withheld responding to the catch licked in response to the pure tone.

The center frequencies of distractor noise bursts spanned 3 octaves around the target tone
frequency, which was varied randomly between days (0.l–20 kHz). Initially, training sessions
contained only a single pure tone target (Inf dB SNR). As training progressed, masking noise was
introduced to the target tone in order to increase task difficulty. By the end of training, a single
behavioral session could consist of up to 4 different target stimuli (-10 dB, -5 dB, 0 dB, Inf dB). More
difficult target stimuli (e.g., -10 dB) occurred more rarely than easier stimuli (e.g., Inf dB) during
behavioral sessions to maintain motivation. In all cases, noise masking the target was exactly
matched to the catch stimulus (centered at the target frequency). Target frequency was fixed
within a session, and variable SNR was achieved by adjusting tone amplitude relative to the fixed
masking noise. That is, the masking noise (and distractor stimuli) were always presented with an
overall sound level of 60 dB SPL. Infinite (inf) dB trials corresponded to trials where the target
tone was presented at 60 dB SPL without any masking noise present, 0 dB to trials where the target
was 60 dB SPL, -5 dB to trials where the target was presented at 55 dB SPL etc. Neurophysiological
recordings proceeded only after animals were able to perform the full, variable SNR task with
consistently above chance level performance on –5 dB SNR target tones.

Acoustic stimuli
All experiments were performed in a sound-attenuating chamber (Gretch-Ken). Sound
presentation and behavioral control were provided by custom MATLAB software (https://bitbucket
.org/lbhb/baphy     ). Digital acoustic signals were transformed to analog (National Instruments),
amplified (Crown), and delivered through free-field speakers (Manger, 50-35,000 Hz flat gain).
Speakers were located 80 cm from the animal at +/-30 deg. azimuth. Stimuli were presented from a
single speaker (left or right). During neurophysiology experiments, the speaker contralateral to the
recording hemisphere was used. Sound level was equalized and calibrated against a standard
reference (PCB Piezoelectronics).

Neurophysiology
Neurophysiological recordings were performed using 64-channel silicon microelectrode arrays
(Shobe et al., 2015     ). Electrode contacts were spaced 20 μm horizontally and 25 μm vertically in
three columns, collectively spanning 1.05 mm of cortex. Data were amplified (RHD 128-channel
headstage, Intan Technologies), digitized at 30 kHz (Open Ephys (Black et al., 2017     )) and saved to
disk for offline analysis.

Spike sorting was performed using Kilosort2 (Pachitariu et al., 2016     ), followed by curation in phy
(https://github.com/cortex-lab/phy     ). For all identified spike clusters, we quantified isolation as one
minus a contamination percentage, defined based on the cluster’s isolation in feature space. We
categorized spikes with isolation >85% as isolated or nearly isolated units and included them in all
analyses in this study.
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Auditory field localization
Initial recordings targeted A1 using external landmarks (Radtke-Schuller, 2018     ). Tuning curves
were calculated using pure tone stimuli (100 ms duration, 200 ms ISI, 3-7 octaves). Neurons were
confirmed to be in A1 based on stereotypical response properties: short latency responses to
sound onset, sharp and consistent frequency tuning across layers, and a characteristic dorsal-
ventral tonotopic map across penetrations (Shamma et al., 1993     ). Once A1 was located,
subsequent craniotomies were opened in small lateral steps. Tuning was measured at each
recording site, and the border between A1 and dPEG was defined as the location where the
tonotopic map gradient reversed (Atiani et al., 2014     ; Bizley et al., 2005     ). After all recording
sessions were completed, the best frequencies for each penetration were plotted according to their
stereotactic coordinates for post-hoc confirmation of the boundary between A1 and dPEG.
Ambiguous recording sites that could not be confidently placed into either area based on their
frequency tuning were excluded from analysis.

Pupil recording
To account for spontaneous fluctuations in arousal that can modulate cortical activity (McGinley et
al., 2015     ; Schwartz et al., 2020     ), infrared video of the animal’s eye was recorded for offline
analysis (camera: Adafruit TTL Serial Camera, lens: M12 Lenses PT-2514BMP 25.0mm). The eye
ipsilateral to neurophysiological recording site was recorded so that camera hardware did not
interfere with contralateral sound stimuli. To measure pupil size, we fit an ellipse to the boundary
of the animal’s pupil on each frame using a custom machine learning algorithm based on
DenseNet201 (Huang et al., 2018     ) and saved the dimensions of the ellipse on each frame. Pupil
size was shifted 750 ms relative to spike times in order to account for the previously reported
lagged relationship between neural activity and pupil in cortex (McGinley et al., 2015     ).

Analysis of behavioral performance
Behavioral performance was measured using d-prime (Green and Swets, 1966     ), defined as the z-
scored difference between the target hit rate and false alarm rate across a behavior session. We
measured false alarm rate from response to the catch stimulus, whose temporal distribution
within a trial was explicitly balanced with target locations across trials. Thus, for each target SNR,
d-prime described how well the animal could discriminate that target from the catch stimulus. A
d-prime of 0 indicates chance level performance.

Single neuron evoked activity and d-prime
Responses of single neurons to task stimuli were measured by computing each neuron’s peri-
stimulus time histogram (PSTH) response to each stimulus. For visualization (e.g., Figure 2     ),
spiking activity was binned at 20 ms, normalized to its 100 ms pre-stimulus baseline, z-scored, and
smoothed with a gaussian kernel of width of 30 ms. Single trial responses were computed as a
neuron’s mean z-scored activity during the 300 ms sound evoked window. For active trials, we
included responses measured on hit, correct reject, and miss trials. To quantify neural
discriminability between catch and target sounds, we measured the difference between the mean
z-scored response to target versus catch stimuli (neural d-prime), which is analogous to the
behavioral d-prime described above.

Neural population d-prime
To determine how well the activity of simultaneously recorded populations of neurons could
discriminate between task stimuli, we measured neural population d-prime. Similar to the single
neuron metric, population d-prime was defined as the z-scored difference in the population
response to two distinct sound stimuli. We projected high-dimensional z-scored population activity
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onto a one-dimensional optimal linear discrimination axis to compute d-prime (Abbott and Dayan,
1999     ), where Δµ is equal to the mean difference in response to the two stimuli and Σ is the
stimulus-independent covariance matrix.

Prior work has shown that finding an optimal discrimination axis for large neural populations can
be unreliable because of overfitting to trial-limited data (Kanitscheider et al., 2015     ). To avoid
overfitting, we performed decoding-based Dimensionality Reduction (dDR) prior to computing the
discrimination axis (Heller and David, 2022     ). In brief, this procedure projected the population
activity into the two-dimensional space spanned by the population covariability axis (noise axis)
and sound discrimination axis (signal axis), where e1 is the first eigenvector of the population
covariance matrix.

The full dimensionality reduction and decoding procedure was repeated for each stimulus pair
individually to avoid bias from stimuli that produced different magnitude responses. Results were
grouped into behaviorally relevant (target versus catch) and behaviorally irrelevant (target versus
target, distractor versus distractor) categories. To be included in the analysis, we required that a
sound stimulus must have been presented in at least five active and five passive trials. Thus, the
number of target stimuli analyzed per session depended on animal’s performance and how long
they remained engaged in the task; for shorter behavioral sessions, fewer repetitions of each
stimulus were presented and target conditions with low repetition count were omitted.

Choice probability analysis
We performed a choice decoding analysis on hit vs. miss trials. We followed the same procedure as
described above for stimulus decoding, where instead of a pair of stimuli our two classes to be
decoded were “hit trial” vs. “miss trial”. That is, for each target stimulus we computed the optimal
linear discrimination axis separating hit vs. miss trials (Abbott and Dayan, 1999     ) in the reduced
dimensionality space identified with dDR (Heller and David, 2022     ). For the sake of
interpretability with respect to previous work we reported choice probability as the percentage of
correctly decoded trial outcomes rather than d-prime. Percent correct was calculated by projecting
the population activity onto the optimal discrimination axis and using leave-one-out cross
validation to measure the number of correct classifications.

Factor analysis – population metrics
To characterize population-wide covariability we used factor analysis (Umakantha et al., 2021     ).
Factor analysis is the simplest form of dimensionality reduction that explicitly separates shared
variance across neurons from independent variance of single neurons, decomposing the spike
count covariance matrix into two parts, a covariance matrix representing shared variance
between neurons (Σshared) and a diagonal matrix representing the independent variance of each
single neuron (Ψ):

Because we were interested in stimulus-independent trial-trial variance and the role it played in
behaviorally relevant sound decoding, we performed this analysis only on responses to the catch
stimulus, as this was common to all measurements of pairwise target vs. catch discrimination
accuracy. This way, spike-count covariance was not due to changing stimulus conditions and we
could directly ask how it interacted with the behaviorally relevant, target vs. catch discrimination
axis. We fit a unique Factor Analysis model for each behavior state (active verses passive) and
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experiment. The number of total factors was selected as the model which maximized log-
likelihood. Following prior work, we quantified properties of each Factor Analysis model using
three metrics (Umakantha et al., 2021     ):

Loading similarity

Similarity of neuronal loading weights for the Factor that explained maximal shared variance. A
value of 0 indicates maximal dissimilarity of weights and a value of 1 indicates that the weights for
all neurons are identical.

Percent shared variance (%sv)

The percentage of each neuron’s variance that can be explained using other neurons in the
population. Ranges from 0% to 100%.

Dimensionality

The number of dimensions that maximized log-likelihood. In other words, the rank of the shared
spike-count covariance matrix. Integer value.

Factor analysis – simulations
We simulated neural population responses to each target and catch stimulus by drawing samples
from a multivariate gaussian distribution (n = 2000 responses were generated for each sound /
behavior state). The mean response of each neuron was determined using the neuron’s actual
PSTH and covariance between neurons was defined as the rank R < N covariance matrix that
maximized the likelihood of the Factor Analysis model for each sound stimulus. Data were
simulated independently for each behavior state (passive listening vs. active task engagement). We
simulated activity with four models:

Null

Mean response, independent variance, and covariance of the gaussian distribution were fixed to
the active neuron PSTH, active independent variance (Ψahctive), and active covariance matrix
(Σshared, active) for both passive and engaged states. Thus, simulated data (rsim) were statistically
identical between passive and engaged conditions.

Gain only

Independent variance and covariance for both passive and engaged states were fixed to the active
estimates, but mean was matched to the actual condition’s PSTH. Thus, variance was independent
of task but mean evoked response magnitude was allowed to be modulated by task engagement.

Independent variance

Mean evoked response and independent variance were modulated by task engagement.
Covariance was fixed between states.
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Shared variance

All parameters of the gaussian distribution were matched to the state-dependent estimates.

Alignment of population covariability axes
To measure the alignment of two population covariability axes, we used the absolute value of their
cosine similarity. Thus, alignment ranged from 0 (perfectly orthogonal) to 1 (perfectly aligned). In
the noise axis versus discrimination axis alignment analysis, we defined the noise axis as the
Factor that explained the most shared variance in the catch response (see above section: Factor
Analysis).

Pupil-indexed arousal control
To control for changes in neural activity that were due to non-specific increases in arousal rather
than task engagement (Saderi et al., 2021     ), we used linear regression to remove variability in the
activity of single neurons that could be explained by pupil size. The response of each neuron to
each stimulus, ri.(t), was modeled as a linear function of pupil size, p(t):

Then, to remove the pupil-explainable variance from each neuron’s response but preserve any
pupil-independent effect of task engagement on activity, we defined the corrected firing rate, ri(t),
as the true response minus the pupil-dependent portion of the regression model:

Thus, the mean sound evoked response was preserved but changes correlated with pupil were
removed. This procedure was performed prior to analysis of task-dependent selectivity in dPEG
(e.g., Figure 3     ). Results were similar for a control analysis that ignored pupil-dependent
changes, indicating that the emergent selectivity in dPEG does not depend on this correction for
generalized effects arousal (Figure 3 – figure supplement 2).

Statistical tests
For each experimental recording session, we measured the population decoding performance of
multiple stimulus pairs. To control for any statistical dependencies between these data points
within a recording session, we first took the mean projection across stimulus pairs within each
recording session before measuring p-values. This procedure reduces our statistical power but
provides more conservative estimates of statistical significance which are more robust to detecting
spurious false positive results. For all pairwise statistical tests shown in Figures 3     , 5     , and
Figure 3 – figure supplement 1 we performed a Wilcoxon signed rank test. Significance was
determined at the alpha = 0.05 level. The number of unique recording sessions and animals that
went into each comparison are listed in the main text / figure legends, along with the p-value for
each analysis.

The one exception to this general approach is in Figure 2     , where we analyzed the sound
discrimination abilities of single neurons. In this case, we computed p-values for each neuron and
stimulus independently. First, for each neuron and catch vs. target stimulus pair, we measured d-
prime (see Methods: Single neuron evoked activity and d-prime). We generated a null distribution
of d-prime values for each neuron-stimulus pair, under each experimental condition by shuffling
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stimulus identity across trials before computing d-prime (100 resamples). A neuron was
determined to have a significant d-prime for a given target vs. catch pair if its actual measured d-
prime was greater than the 95th percentile of the null d-prime distribution. Second, for each
neuron and catch vs. target stimulus pair, we tested if d-prime was significantly different between
active and passive conditions. To test this, we followed a similar procedure as above, however,
rather than shuffle stimulus identity, we shuffled active vs. passive trial labels. This allowed us to
generate a null distribution of active vs. passive d-prime difference for each neuron and stimulus
pair. A neuron was determined to have a significant change in d-prime between conditions if the
actual Δ d-prime lay outside the 95% confidence interval of the null Δ d-prime distribution.

In Figure 4     , we tested if the change in neural population d-prime was correlated with behavior
performance on a per-target stimulus basis. Because each target had different behavioral
performance (due to varying SNR), here we treated each stimulus as an independent sample.
Therefore, correlation was measured between n sessions x n target stimuli neural vs. behavioral d-
primes. To determine the significance of correlation in each brain region, we performed random
bootstrap resampling to generate a null distribution of correlation values. The correlation for a
given brain region was deemed significant if the actual observed correlation was greater than the
97.5-percentile of the null distribution.

To evaluate the performance of FA model simulations in predicting behavioral selectivity (Figure
5     ) and Δ d-prime (Figure 5 – figure supplement 2), we measured the correlation between
simulated and actual metrics for each model. To determine if stepwise changes in the FA model
(e.g., adding task-dependent gain modulation) caused significant improvements in model
performance, we compared correlation coefficients for each model to the correlation coefficient
for the final model. To do this, we computed 1000 bootstrap resamples of the correlation
coefficient for each model. If the 97.5-percentile of this distribution was greater than the observed
correlation for the full model, we determined that it was not significantly different. That is, if the
observed correlation for the full model lay within the 95% confidence interval of the null
bootstrapped distribution for a given model, it was determined to not be significantly different
than the full model.
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Reviewer #1 (Public Review):

This is a very interesting paper which addresses how auditory cortex represents sound while
an animal is performing an auditory task. The study involves psychometric and
neurophysiological measurements from ferrets engaged in a challenging tone in noise
discrimination task, and relates these measurements using neurometric analysis. A novel
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neural decoding technique (decoding-based dimensionality reduction or dDR, introduced in a
previous paper by two of the authors) is used to reduce bias so that stimulus parameters can
be read out from neuronal responses.

The central finding of the study is that, when an animal is engaged in a task, non-primary
auditory cortex represents task-relevant sound features in a categorical way. In primary
cortex, task engagement also affects representations, but in a different way - the decoding is
improved (suggesting that representations have been enhanced), but is not categorical in
nature. The authors argue that these results are compatible with a model where early
sensory representations form an overcomplete representation of the world, and downstream
neurons flexibly read out behaviourally relevant information from these representations.

I find the concept and execution of the study very interesting and elegant. The paper is also
commendably clear and readable. The differences between primary and higher cortex are
compelling and I am largely convinced by the authors' claim that they have found evidence
that broadly supports a mixed selectivity model of neural disentanglement along the lines of
Rigotti et al (2013). I think that the increasing body of evidence for these kinds of
representations is a significant development in our understanding of higher sensory
representations. I also think that the dDR method is likely to be useful to researchers in a
variety of fields who are looking to perform similar types of neural decoding analysis.

https://doi.org/10.7554/eLife.89936.2.sa1

Reviewer #2 (Public Review):

This study compares the activity of neural populations in the primary and non-primary
auditory cortex of ferrets while the animals actively behaved or passively listened to a sound
discrimination task. Using a variety of methods, the authors convincingly show differential
effects of task engagement on population neural activity in primary vs non-primary auditory
cortex; notably that in the primary auditory cortex, task-engagement (1) improves
discriminability for both task-relevant and non-task relevant dimensions, and (2) improves
the alignment between covariability and sound discrimination axes; whereas in the non-
primary auditory cortex, task-engagement (1) improves discriminability for only task-
relevant dimensions, and (2) does not affect the alignment between covariability and sound
discrimination axes. They additionally show that task-engagement changes in gain can
account for the selectivity noted in the discriminability of non-primary auditory neurons.
They also admirably attempt to isolate task-engagement from arousal fluctuations, by using
fluctuations in pupil size as a proxy for physiological arousal. This is a well-carried out study
with thoughtful analyses which in large part achieves its aims to evaluate how task-
engagement changes neural activity across multiple auditory regions . As with all work, there
are several caveats or areas for future study/analysis. First, the sounds used here (tones, and
narrow-band noise) are relatively simple sounds; previous work suggests that exactly what
activity is observed within each region (e.g., sensory only, decision-related, etc) may depend
in part upon what stimuli are used. Therefore, while the current study adds importance to
the literature, future work may consider the use of more varied stimuli. Second, the animals
here were engaged in a behavioral task; but apart from an initial calculation of behavioral d',
the task performance (and its effect on neural activity) is largely unaddressed.

https://doi.org/10.7554/eLife.89936.2.sa0
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Public Reviews:

Reviewer #1 (Public Review):

…I find the concept and execution of the study very interesting and elegant. The paper is
also commendably clear and readable. The differences between primary and higher
cortex are compelling and I am largely convinced by the authors' claim that they have
found evidence that broadly supports a mixed selectivity model of neural
disentanglement along the lines of Rigotti et al (2013). I think that the increasing body of
evidence for these kinds of representations is a significant development in our
understanding of higher sensory representations. I also think that the dDR method is
likely to be useful to researchers in a variety of fields who are looking to perform similar
types of neural decoding analysis.

Thanks! We agree that questions around population coding and high-level representations
are critical in the field of sensory systems.

Reviewer #2 (Public Review):

... This is a well-carried out study with thoughtful analyses which in large part achieves its
aims to evaluate how task-engagement changes neural activity across multiple auditory
regions. As with all work, there are several caveats or areas for future study/analysis.
First, the sounds used here (tones, and narrow-band noise) are relatively simple sounds;
previous work suggests that exactly what activity is observed within each region (e.g.,
sensory only, decision-related, etc) may depend in part upon what stimuli are used.
Therefore, while the current study adds importantly to the literature, future work may
consider the use of more varied stimuli. Second, the animals here were engaged in a
behavioral task; but apart from an initial calculation of behavioral d', the task
performance (and its effect on neural activity) is largely unaddressed.

The reviewer makes several important points that we hope we addressed in the specific
changes detailed below. Indeed, it is important to recognize the possibility that the specific
stimuli involved in a task may interact with the effects of behavioral state and that variability
in task performance should be considered as an important aspect of behavioral state.

Reviewer #1 (Recommendations For The Authors):

I have a few minor comments and criticisms:

(1) Figure 1c. The choice of low-contrast grey text (e.g. "Target vs. target" is unfortunate,
especially when printed, and should be replaced (e.g. with dark grey).

We have edited the figure to use a higher contrast (dark grey). Thanks for catching this.

(2) Figure 2 and Supplementary Figure 3. I think some indication of error or significance
is required in all panels. Without this, it's hard to interpret any of these panels.

Thank you for this feedback. Including significance here was clarifying and helps to
strengthen our claim that state-dependent changes in neural activity were smaller and more
diverse for single neurons than at the population level. We modified Figure 2b-c to indicate
whether each neuron’s response to the target stimulus was significantly different than its
response to the catch stimulus. The same test was performed in Supplementary Figure 3.
Additionally, we added a statistical test in Figure 2d-e to indicate, for each pair of target/catch
stimuli, whether discrimination (d-prime) changed significantly between active and passive
conditions. Furthermore, we modified the text of the second paragraph under the results
heading: “Diverse effects of task engagement on single neurons in primary and non-primary

https://doi.org/10.7554/eLife.89936.2
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auditory cortex” to reference and interpret the results of these significance tests. The new
text reads as follows (L. 121):

“Sound-evoked spiking activity was compared between active and passive states to study the
impact of task engagement on sound representation. In both A1 and dPEG, responses to target
and catch stimuli were significantly discriminable for a subset of single neurons (about 25%
in both areas, Figure 2A-C, Supplemental Figures 3-5, bootstrap test). This supports the idea
that stimulus identity can be decoded in both brain regions, regardless of task performance.
However, the fact that the responses of most neurons in both brain areas could not
significantly discriminate target vs. catch stimuli also highlights the diversity of sound
encoding observed at the level of single neurons. The accuracy of catch vs. target
discrimination for each neuron was quantified using neural d-prime, the z-scored difference
in target minus catch spiking response for each neuron (Methods: Single neuron PSTHs and
d-prime (Niwa et al., 2012a)). Task engagement was associated with significant changes in
catch vs. target d-prime for roughly 10% of neurons in both A1 (40 / 481 neurons, bootstrap
test) and dPEG (33 / 377 neurons, bootstrap test). This included neurons that both increased
their discriminability and decreased their discriminability (Figure 2D-E). Thus, the effects of
task engagement at the level of single neurons were relatively mild and inconsistent across
the population; many neurons showed no significant change and of those that did, effects
were bidirectional (Figure 2D-E).”

We also included an additional methods paragraph in the “Statistical tests” section to describe
the bootstrapping procedure used for these significance tests (L. 644):

“The one exception to this general approach is in Figure 2, where we analyzed the sound
discrimination abilities of single neurons. In this case, we computed p-values for each neuron
and stimulus independently. First, for each neuron and catch vs. target stimulus pair, we
measured d-prime (see Methods: Single neuron evoked activity and d-prime). We generated a
null distribution of d-prime values for each neuron-stimulus pair, under each experimental
condition by shuffling stimulus identity across trials before computing d-prime (100
resamples). A neuron was determined to have a significant d-prime for a given target vs.
catch pair if its actual measured d-prime was greater than the 95th percentile of the null d-
prime distribution. Second, for each neuron and catch vs. target stimulus pair, we tested if d-
prime was significantly different between active and passive conditions. To test this, we
followed a similar procedure as above, however, rather than shuffle stimulus identity, we
shuffled active vs. passive trial labels. This allowed us to generate a null distribution of active
vs. passive d-prime difference for each neuron and stimulus pair. A neuron was determined
to have a significant change in d-prime between conditions if the actual Δ d-prime lay outside
the 95% confidence interval of the null Δ d-prime distribution.”

For Figure 2a, we chose not to indicate significance on the figure to avoid clutter, since the
significance for all neurons in the population are shown in panels b-c anyway. Additionally,
the difference plot shown in panel a is in units of z-scores, which we believe already gives a
raw sense of the significance of the target vs. catch response change per neuron in this
example dataset.

(3) Figure 2 and Supplementary Figure 3. I would consider including some more
examples as a Supplementary Figure (and perhaps combining Supp Fig 3 with Fig 2 as a
main figure).

We found no significant or apparent difference in single-neuron properties between A1 and
dPEG. Therefore, we decided it is not helpful to plot both A1 and PEG examples in the main
text. However, we agree that the ability to see more examples of the raw data could be useful.
Therefore, we compiled two supplementary figures (Supplementary Figures 4 and 5) that
replicate Figure 2a for all datasets, encompassing A1 and PEG.

https://doi.org/10.7554/eLife.89936.2
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(4) Figure 2a and Supp Fig 3a. I was initially confused that the "delta-spk/sec (z-score)"
values had themselves been z-scored, but now I think that they are simply the differences
of the two left hand sub-panels. This could be made clear in the figure legend.

The figure legends have been modified to state the procedure for computing “delta-spk/sec”
more clearly. Specifically, we added the following information to the legend (L. 141):

“Difference is computed as the z-scored response to the target minus the z-scored catch
response (resulting in a difference shown in units of z-score).”

(5) Figure 2b-e and Supp Fig 3b-e. Indicate the time window over which the responses
were measured, and the number of neurons.

Figure legends have been modified to include a sentence clearly stating the time window
over which responses were measured. The number of neurons is also now included in the
legend and on the figure itself. Furthermore, a brief description of the new statistical testing
procedure has been added here (L. 144).

“Responses were defined as the total number of spikes recorded during the 300 ms of sound
presentation (area between dashed lines in panel A). Neurons with a significantly different
response to the catch vs. target stimulus are indicated in black and quantified on the
respective figure panel.”

(6) Figure 2. "singe" should read "single"

Typo in figure label has been fixed.

(7) Line 144. Figure number is missing (Figure 3B-C).

The missing figure number has been added to the text.

(8) Figure 3. Again, the low-contrast grey should be replaced.

The low-contrast grey has been replaced with dark grey.

Reviewer #2 (Recommendations For The Authors):

This study really nicely compares the activity and effects on activity in two areas of the
auditory cortex in respect to task-engagement; I think it is, for the most part, very well
done.

A couple of specific recommendations:

(1) Although I understand 'inf dB' as the SNR, including the actual dB level used in the
experiments, would be useful, especially in the case of the inf dB.

Thank you for this feedback. We agree that clarification about the overall sound level used
here would be helpful. We have modified the methods section “Behavioral paradigm” to
include the following sentence (L. 450):

“That is, the masking noise (and distractor stimuli) were always presented with an overall
sound level of 60 dB SPL. Infinite (inf) dB trials corresponded to trials where the target tone
was presented at 60 dB SPL without any masking noise present, 0 dB to trials where the target
was 60 dB SPL, -5 dB to trials where the target was presented at 55 dB SPL etc.”

https://doi.org/10.7554/eLife.89936.2
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In addition, we have modified the main text (L. 82):

“Animals reported the occurrence of a target tone in a sequence of narrowband noise
distractors by licking a piezo spout (Figure 1A, Methods: Behavioral paradigm, distractor
stimulus sound level: 60 dB SPL). … We describe SNR as the overall SPL of the target relative
to distractor noise level. Thus, an SNR of –5 dB corresponds to a target level of 55 dB SPL
while an Inf dB SNR corresponds to a target tone presented without any masking noise.”

And Figure legend 1 now explicitly states the sound level used in the experiments (L. 104):

“Variable SNR was achieved by varying overall SPL of the target relative to the fixed (60 dB
SPL) distractor noise, e.g., -5 dB SNR corresponds to a 55 dB SPL target with 60 dB SPL
masking noise. Infinite (inf) dB SNR corresponds to a target tone presented in isolation (60 dB
SPL).”

(2) I very much appreciate the attempt to disentangle task engagement from generalized
arousal state, and specifically, addressing this through the use of pupillometry. However,
by focusing the discussion of pupil dynamics solely on the arousal-state aspects of pupil
size, the paper doesn't address the increasing evidence suggests that pupil size may
fluctuate based upon a lot of other things, including perceptual events (see Kronemer et
al, 2022 for a recent human paper; for auditory: Zekveld et al 2018 (review) and Montes-
Lourido et al, 2021; but many many others, too). It would be nice to see either a bit more
nuanced discussion of what pupil size may be indicating (easier), or analyzing the
behavior in the context of pupil dynamics (a heavier lift).

This is a good point. We agree that it is worth mentioning these more nuanced aspects of
cognition that may be reflected by pupil size. Therefore, we also analyzed pupil size in the
context of behavioral performance (see Supplemental Figure 6) and added the following text
to the results (L. 193).

“In addition to reflecting overall arousal level, pupil size has also been reported to reflect
more nuanced cognitive variables such as, for example, listening effort (Zekveld et al., 2014).
Furthermore, rodent data suggests that optimal sensory detection is associated with
intermediate pupil size (McGinley et al., 2015), consistent with the hypothesis of an inverted-
U relationship between arousal and behavioral performance (Zekveld et al., 2014). To
determine if this pattern was true for the animals in our task, we measured the dynamics of
pupil size in the context of behavioral performance. Across animals, task stimuli evoked
robust pupil dilation that varied with trial outcome (Supplemental Figure 6b-c). Notably, pre-
trial pupil size was significantly different between correct (hit and correct reject), hit, and
miss trials (Supplemental Figure 6b-c), recapitulating the finding of an inverted-U
relationship to performance in rodents (McGinley et al., 2015). Since we focused only on
correct trials in our decoding analysis, these outcome-dependent differences in pupil size are
unlikely to contribute to the emergent decoding selectivity in dPEG.”

(3) I think it would make this paper shine that much more if behavioral performance
were not subsumed into the overall label of task engagement. You've already established
you have performance that varies as a function of SNR; I would love to see the neural d'
and covariability related to the behavioral d' (in the comparisons where this is possible). I
would also love to see a more direct measure of choice for those stimuli that show
variable behavior (e.g., a choice probability analysis or something of the like would seem
to be easily applied to the target SNRs of -5 and 0 dB); and compare task engaged
activity of hits vs misses vs passive listening to those same stimuli. You discuss previous
studies looking at choice-related/decision-related activity and draw parallels to this work-
given that there is the opportunity with this data set to *directly* assess choice-related
activity, the absence of such an analysis seems like a missed opportunity.

https://doi.org/10.7554/eLife.89936.2
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Thank you for this feedback. We agree that “task engagement” is not a unimodal state and
that a more fine-grained analysis of task-engaged neural activity, according to behavioral
choice, could be informative.

First, we would like to point out that in Figure 4 we did already compare behavioral d’ to
delta neural d’. We found that the two were significantly correlated in dPEG, but not in A1.
This suggests that task-dependent changes in stimulus decoding in dPEG, but not A1, are
predictive of behavioral performance. This is consistent with the finding that task-relevant
stimulus representations were selectively enhanced in dPEG, but not in A1.

Second, we added a choice decoding analysis to address whether auditory cortex represents
the animal’s choice in our task. The results of this analysis are summarized in Supplemental
Figure 8 and are discussed under the results section: “Behavioral performance is correlated
with neural coding changes in non-primary auditory cortex only.” (L. 226):

“The previous analysis suggests that the task-dependent increase in stimulus information
present in dPEG population activity is predictive of overall task performance. Next, we asked
whether the population activity in either brain region was directly predictive of behavioral
choice on single hit vs. miss trials. To do this, we conducted a choice probability analysis
(Methods). We found that in both brain regions choice could be decoded well above chance
level (Supplemental Figure 8). Choice information was present throughout the entire trial and
did not increase during the target stimulus presentation. This suggests that the difference in
population activity primarily reflects a cognitive state associated with the probability of
licking on a given trial, or “impulsivity” rather than “choice.” This interpretation is consistent
with our finding that baseline pupil size on each trial is predictive of trial outcome
(Supplemental Figure 6b).”

To keep our decoding approach consistent throughout the manuscript, we followed the same
approach for choice decoding as we did for stimulus decoding (perform dDR then calculate
neural d-prime in the dimensionality reduced space). To make the results more interpretable,
we converted choice d-prime to a choice probability (percent correctly decoded choices)
using leave-one-out cross validation. (We note that d-prime and percent correct are very
highly correlated statistics.) This is described in the methods as follows (L. 550):

“We performed a choice decoding analysis on hit vs. miss trials. We followed the same
procedure as described above for stimulus decoding, where instead of a pair of stimuli our
two classes to be decoded were “hit trial” vs. “miss trial”. That is, for each target stimulus we
computed the optimal linear discrimination axis separating hit vs. miss trials (Abbott and
Dayan, 1999) in the reduced dimensionality space identified with dDR (Heller and David,
2022). For the sake of interpretability with respect to previous work we reported choice
probability as the percentage of correctly decoded trial outcomes rather than d-prime.
Percent correct was calculated by projecting the population activity onto the optimal
discrimination axis and using leave-one-out cross validation to measure the number of
correct classifications.”

(4) It would also be interesting to look at population coding across sessions (although the
point is taken that within a session allows the opportunity to assess covariability).
Minorly self-servingly but very much related to the above point, Christison-Lagay et al,
2017 employed a similar detect-in-noise task, analyzed single neurons and population
level activity, and looked at putative choice-related activity. The current study has the
opportunity to expand on that kind of analysis that much more by looking across
multiple sites vs within a given recording site; and compare across regions.

Thank you for highlighting this point, we agree that it is important. When studying
population coding it is critical to consider the impact of covariability between neurons.
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Charles R. Heller et al., 2024 eLife. https://doi.org/10.7554/eLife.89936.2 30 of 30

Therefore, it is worthwhile to revisit our interpretations of prior results, e.g., Christison-Lagay
et al, 2017, which studied population coding by combining neurons across different sessions,
given that we now have access to simultaneously recorded population data.

First, we would like to point out that this was the primary motivation for our simulation
analyses presented in Figure 5. Using simulations, we found that task-dependent gain
modulation (which can be observed across sessions) was sufficient to explain our primary
finding – selective enhancement in decoding of behaviorally relevant sound stimuli in dPEG.

Second, to address the question about how covariability affects choice-related information in
auditory cortex and compare our findings with prior studies, we performed the same set of
simulations for choice probability analysis. We found that, again, choice-dependent gain
modulation was sufficient to explain our findings. That is, simulations with hit- vs. miss-
dependent gain changes, but fixed covariability, closely mirrored the choice probability we
observed in the raw data. An additional simulation where covariability between all neurons
was set to zero also recapitulated our findings in the raw data. Collectively, this suggests that
covariability does not play a significant role in shaping the choice information present in A1
and dPEG during this task. We have added the following text to the manuscript to summarize
this finding (L. 293):

“Finally, we used the same simulation approach to determine what aspects of population
activity carry the “choice” related information we observed in A1 and dPEG (Figure 4 – figure
supplement 1). Similar to our findings for stimulus decoding, we found that gain modulation
alone was sufficient to recapitulate the choice information present in the raw data for this
task. This helps frame prior work that pooled neurons across sessions to study population
coding of choice in similar auditory discrimination tasks (Christison-Lagay et al, 2017).”

https://doi.org/10.7554/eLife.89936.2.sa3
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