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Abstract

The ability to discriminate between complex natural sounds is critical for survival.

Changes in arousal and other aspects of behavioral state can impact the accuracy of sensory

coding, affecting both the reliability of single neuron responses and the degree of correlated

noise between neurons. However, it is unclear how these effects interact to influence coding

of diverse natural stimuli. We recorded the spiking activity of neural populations in primary

auditory cortex (A1) evoked by a large library of natural sounds while monitoring changes

in pupil size as an index of arousal. Heightened arousal increased response magnitude and

reduced noise correlations between neurons, improving coding accuracy on average. Rather

than suppressing shared noise along all dimensions of neural activity, the change in noise

correlations occurred via coherent, low-dimensional modulation of response variability in A1.

The modulation targeted a different group of neurons from those undergoing changes in re-

sponse magnitude. Thus, changes in response magnitude and correlation are mediated by

distinct mechanisms. The degree to which these low-dimensional changes were aligned with the

high-dimensional natural sound-evoked activity was variable, resulting in stimulus-dependent

improvements in coding accuracy.

Introduction 1

Humans and other animals are able to discriminate between a multitude of natural sounds. 2

This ability is not static, as the precision of sensory representations by neural activity fluctuates 3

with changes in behavioral state.1 Arousal, task engagement, and attention have all been 4
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reported to modulate the magnitude and selectivity of single neuron auditory responses,2–12
5

as well as correlated variability across neural populations, often referred to as noise correla- 6

tions.13–16 In general, increased arousal and focused attention are associated with increased 7

response magnitude and decreased noise correlations which are believed to enhance the accu- 8

racy of sensory coding.1,13,16,17 However, the mechanisms that produce these changes, and 9

the consistency of their effects between different behavioral contexts, are not fully understood. 10

Recent studies have argued that attention-driven changes in both single neuron responses 11

and correlated activity can be modeled as fluctuations in a single, latent signal that coherently 12

modulates the activity of a subset of neurons. These findings suggest that state-dependent 13

neural population activity occurs in a low-dimensional subspace,18,19 supporting theoretical 14

models in which a single mechanism accounts for changes in single neuron responses and cor- 15

related variability.20,21 Fluctuations in arousal, measured by luminance-independent changes in 16

pupil size, modulate neural activity in similar ways to attention,2,13,17 yet these changes occur 17

independent of attention.22 Previous work has not specifically investigated the dimensionality 18

of arousal-dependent signaling and it remains uncertain whether, like other behavioral contexts, 19

it can be explained by a low-dimensional process. 20

Most studies of population coding accuracy rely on relatively small, simple stimulus sets 21

that drive neural activity in stereotyped ways.16,23,24 Yet, theoretical work predicts that noise 22

correlations can either enhance or impair coding accuracy, depending on their alignment with 23

the stimulus-evoked activity in the neurons being studied.20,25–30 If the effects of arousal 24

are relatively high-dimensional, meaning that they suppress noise along many different di- 25

mensions of neural activity, they should improve coding accuracy of most sensory stimuli 26

equally. Alternatively, if the effects of arousal are confined to a low-dimensional subspace of 27

neural activity, their alignment with sensory-evoked responses should be variable, resulting in 28

stimulus-dependent changes in coding accuracy. 29

In the present study, we investigated the dimensionality of arousal-dependent signaling 30

and its impact on coding accuracy by recording population activity from primary auditory 31

cortex while presenting a large library of natural sounds. We simultaneously monitored arousal 32

level using pupil size.2,31 To measure population coding accuracy of natural sound stimuli, we 33

developed a novel dimensionality reduction approach.32,33 Overall, arousal improved neural 34

discriminability of natural sounds. However, the degree of improvement varied substantially be- 35

tween stimuli, consistent with the hypothesis that arousal acts on a low-dimensional subspace 36

rather than providing a generalized improvement in coding accuracy. In contrast with attention, 37
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modulation of single neuron gain and noise correlations were distinct. These processes operated 38

on different neural populations and timescales. Thus, our results demonstrate that arousal 39

drives robust, selective changes in population coding accuracy across diverse sound stimuli 40

and that these changes act through at least two distinct mechanisms. 41

Results 42

We recorded simultaneous single- and multi-unit activity from primary auditory cortex 43

(A1) using single-shank 64-channel, or dual-shank 128-channel linear silicon probes34 (n = 371 44

single-units and n = 331 multi-units, Figure 1B). Data were obtained from n = 25 recording 45

sites in five awake, head-fixed ferrets. During each recording session, we presented a diverse 46

set of randomly interleaved natural sound excerpts35 (e.g. Figure 2A) in the acoustic field 47

contralateral to the recording hemisphere (Figure 1A). To monitor spontaneous fluctuations in 48

arousal, pupil size was measured continuously during neural recordings using infrared video2,31
49

(Figure 1A, B). 50

In ferret A1, changes in pupil size are associated with mostly monotonic changes in 51

neural firing rate.2 Therefore, to assess overall pupil-related changes in activity, we split the 52

neural data in half based on the median pupil size across each experiment (large pupil/high 53

arousal vs. small pupil/low arousal). Transitions between high and low pupil-indexed arousal 54

were accompanied by changes in the excitability of individual neurons and in the strength of 55

correlations between neurons (Figure 1D). When pupil was large, responses to the same sound 56

were stronger and more reliable than when pupil was small. Across all recorded units, both the 57

baseline firing rate and evoked response gain were positively associated with pupil size (Figure 58

S1). Additionally, during large pupil trials population activity was desynchronized relative 59

to the low arousal state; coordinated, stimulus-independent fluctuations in the population 60

PSTH were primarily observed during small pupil trials only. In support of this observation, 61

we found that pairwise noise correlations were significantly reduced in the high arousal state 62

(ρsm = 0.047± 0.005 vs. ρrge = 0.043± 0.005, p = 0.035, Bootstrap test, n = 25 recording 63

sessions, 318± 94 unit pairs per session; Figure S1). These results are consistent with previous 64

reports in ferret,2 mouse,13,17,31 and primate.36
65

66
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Figure 1. Pupil-indexed arousal modulates neural responses to natural sound stim-
uli. A. Single- and multi-unit activity was recorded from A1 of awake, head-fixed ferrets using
laminar electrode arrays during presentation of natural sound stimuli. Pupil size, an index of
arousal, was measured simultaneously using infrared video. B. Pupil trace from one recording
session. Pupil size varied substantially over the course of the recording session, indicating
spontaneous transitions between high and low arousal states. C. Schematic of 64-channel
laminar probe used to record neural activity. Filled circles represent electrode channels on
which at least one unit was detected during the same session (n = 55 total units). D. Top:
Spectrogram of one 3 s natural sound excerpt which was presented multiple times during
the recording session. Middle: Population raster plot of spiking activity by all simultaneously
recorded units during a single stimulus presentation when pupil was large (left, red arrow in
B) and when pupil was small (right, blue arrow in B). Bottom: Population peri-stimulus time
histogram (PSTH) response, averaged across units during the single trial (red / blue) indicated
in B and averaged over all repetitions of this stimulus (gray). p̄k indicates mean pupil size on
each respective trial, k.

The impact of correlated variability on population coding accuracy 67

varies across sensory stimuli 68

We directly measured the impact of noise correlations on coding of natural sounds using 69

d′2, a well-established metric of neural population discriminability.26,27,32,37–39 d′2 describes 70

the ability of population activity to discriminate between two stimuli using an optimal linear 71

decoder. Its value depends both on the mean, stimulus evoked activity and on the variability of 72

responses across trials, or noise correlations, that project along the optimal decoding axis.26–28
73

To prevent overfitting to noise in the high-dimensional population data despite having 74

relatively few repetitions of each stimulus, we performed dimensionality reduction.32,33 Before 75
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measuring d′2, we projected neural responses onto a two-dimensional plane in neural state 76

space. This projection, which we call decoding-based Dimensionality Reduction (dDR, Figure S3), 77

was defined by two axes: the sensory discrimination axis (dDR1 / Δμ) and the global noise axis 78

(i.e. the first principal component of noise correlations, see Methods). In addition to preventing 79

overfitting to single trial noise in d′2 estimates (Figure S4), dDR facilitated visualization of the 80

high dimensional neural population data (Figure 2A, C). Increasing the dimensionality of the 81

dDR space beyond two-dimensions by including additional noise components only increased 82

cross-validated estimates of d′2 marginally and did not impact the effect of arousal on d′2, 83

which is the main focus of this work (Figure S6). 84

Neural discriminability was strongly stimulus-dependent (Figure 2B, C). To determine the 85

source of stimulus dependence, we characterized each stimulus pair by two metrics: discrimi- 86

nation axis magnitude and noise interference (Figure 2B). Discrimination axis magnitude was 87

defined as the vector magnitude of Δμ, which described the amount of sensory information 88

contained in the trial-averaged activity. Noise interference was defined as the cosine simi- 89

larity between Δμ and the correlated variability axis (e1, i.e., the first principal component 90

of stimulus-independent activity in dDR space). Thus, noise interference was a stimulus pair 91

specific metric that described the extent to which single trial variability interfered with the 92

readout of sensory information. These two metrics are used throughout the remainder of this 93

work. To reference their definitions, see Methods: Glossary. 94

Across the full set of stimulus pairs, we observed substantial variability in both discrimina- 95

tion magnitude and noise interference (Figure S5), which in turn led to changes in discrimibaility 96

(Figure 2B). For pairs of stimuli with large discrimination magnitude and low noise interfer- 97

ence, d′2 was large (Figure 2C.IV) and for pairs with small discrimination magnitude and high 98

noise interference, d′2 was small (Fig 2B, C.I). To quantify this, we regressed d′2 against the 99

per-stimulus noise interference and discrimination axis magnitude (Figure 3E, Eqn. 10). For all 100

sites, noise interference coefficients were negative and discrimination magnitude coefficients 101

were positive (βnose = −0.39 ± 0.03, p = 0.000071, U = −3.97, n = 11 recording sessions, 102

Mann-Whitney U Test; βdscrmnton = 0.80 ± 0.02, p = 0.000071, U = 3.97, n = 11 recording 103

sessions, Mann-Whitney U Test), indicating that this pattern was consistent across experiments. 104

Our results illustrate that baseline neural discriminability of natural sounds varies sys- 105

tematically across the stimulus space. The variation of d′2 with respect to noise interference 106

emphasizes that correlated variability has very little impact on discrimination for stimulus pairs, 107

but is critically important for others. This dependence of discriminability on noise interference 108
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persisted after controlling for discrimination magnitude, demonstrating that the effect of noise 109

correlations varies even across pairs of stimuli that differ similarly in their mean response. 110

I II

III IV

I II

III IV

A

Figure 2. Natural stimulus discriminability in A1 populations varies smoothly across
the sensory space. A. Procedure for measuring discriminability between natural sound pairs.
Spectrogram and response raster from one example recording session are shown for exemplar
early (left) and late (right) trials in the experiment. For each 250 ms segment of sound stimuli,
spike counts in the corresponding time window were binned and counted as shown. For each
pair of unique sound segments (blue vs. orange), the spike counts were then projected into dDR
space, where d′2 was measured. B. Heat map indicates neural discriminability, d′2, averaged
across stimulus pairs and recording sites. Values were binned according to discrimination
magnitude (-axis) and noise interference (y-axis). CI-IV. Single-trial responses to four example
sound pairs. Each dot represents the weighted sum of neural population activity on a single
trial. Ellipses indicate standard deviation across trials. Example stimulus pairs shown were
all collected from the same neural population during a single recording session. Each panel
shows a pair of stimuli from a different quadrant (I - IV) in B. e1 (black line) represents the first
eigenvector of the noise in the dDR space and wopt (grey line) represents the optimal decoding
axis for separating the two stimulus classes (blue vs. orange).
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Arousal selectively improves neural discrimination of natural sound 111

stimuli 112

We used the dDR-based decoder to determine how pupil-indexed arousal modulates 113

population coding accuracy in A1. For each pair of stimuli, we computed a single decoding 114

axis across all pupil states, as above (wopt, Eqn. 9). We then split the data from each stimulus 115

pair in half based on the median value of pupil across sound repetitions and computed d′2 116

separately for small and large pupil conditions. The use of a single decoding axis, combined 117

with the median split of data based on pupil size, prevented biasing d′2 for one or the other 118

pupil condition. Across stimulus pairs, we found that discriminability of natural sounds was 119

improved on average in large pupil, high arousal states (Figure 3A). This change was significant 120

across the population (p = 0.02,W = 7, n = 11 recording sites, Wilcoxon signed-rank test). 121

Moreover, the magnitude of the effect was correlated with the amount by which pupil varied 122

within an experiment, consistent with it being driven by pupil-indexed fluctuations in arousal 123

(Figure S7, r = 0.63, p = 0.029, n = 11 recording sessions, permutation test). 124

Our analysis of overall discriminability revealed substantial variation in the impact of 125

noise correlations on d′2 across stimulus pairs (Figure 2B). Therefore, we next considered 126

the possibility that pupil-dependent changes in coding accuracy also depend on these same 127

features. To test this, we computed the fraction change in discriminability between large 128

and small pupil conditions, Δd′2 (Eqn. 12), which ranged from −1 to 1 and could be directly 129

compared across stimulus pairs and recording sites. We binned stimulus pairs according to the 130

discrimination axis magnitude and noise interference (as in Figure 2B) and averaged Δd′2 within 131

bins and across recording sites (Figure 3B). Unlike overall discriminability, improvements did not 132

depend on discrimination magnitude (Figure 3D, right). However, Δd′2 was positively correlated 133

with noise interference; for stimulus pairs with high noise interference, increased arousal led to 134

a greater relative improvement in discriminability (Figure 3D, left). We quantified these axis- 135

dependent changes in Δd′2 using linear regression. Δd′2 and noise interference were positively 136

correlated in 8/11 recording sites (p < 0.05, t-test), and this correlation was significant across 137

experiments (βnose = 0.102 ± 0.028, p = 0.001, U = 3.25, n = 11 recording sessions Mann- 138

Whitney U Test; Figure 3F). No consistent relationship was observed for discrimination magnitude 139

(βdscrmnton = 0.004 ± 0.030, p = 0.718, U = 0.36, n = 11 recording sessions, Mann-Whitney 140

U Test; Figure 3F). These results demonstrate that improvements in stimulus discriminability 141

associated with increased arousal are largest for stimulus pairs where correlated variability 142
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aligns with the discrimination axis. The selectivity of this effect suggests that state-dependent 143

changes are low-dimensional and that they align with the most prominent axis of correlated 144

variability. 145

146

A

B

C

D

E

F

0.1-0.1

Regression weight

Regression weight

Figure 3. Arousal improves discrimination of natural sounds. A. Scatter plot compares
mean discriminability (d′2) across natural sound pairs for small (low arousal) versus large
(high arousal) pupil trials. Each point indicates the mean across all stimulus pairs presented
during a single recording session. Mean discriminability was nearly always greater during
large pupil trials (p = 0.02,W = 7, n = 11 sessions, Wilcoxon signed-rank test). B. Heatmap
shows the relative change in discriminability for large vs. small pupil (Δd′2) as a function
of discrimination axis magnitude (|Δμ|) and noise interference (|cos(θΔμ,e1)|). Results are
smoothed by a Gaussian filter of width two bins. C. Average d′2 for large and small pupil trials
grouped into five evenly spaced bins by noise interference (left) or discrimination magnitude
(right). Points / error bars indicate the mean / standard error across recording sessions.
D. Arousal-related fraction improvement in discriminability (Δd′2) for each session, plotted
as in C. E Regression coefficients computed per recording session for dependence of d′2 on
discrimination magnitude and noise interference. Error bars show bootstrapped 95% confidence
interval across sessions. βNose = −0.39 ± 0.03, p = 0.000071, U = −3.97, βDscrmnton =
0.80 ± 0.02, p = 0.000071, U = 3.97, n = 11 recording sessions, Mann-Whitney U test. F.
Coefficients for pupil-dependent changes in discriminability, Δd′2, plotted as in (E). βNose =
0.102± 0.029, p = 0.001, U = 3.25, βDscrmnton = 0.004± 0.030, p = 0.718, U = 0.36, n = 11
sessions, Mann-Whitney U test.

Arousal improves discriminability through a combination of increased 147

response gain and reduced correlated variability 148

Changes in either single neuron response magnitude or noise correlations (Figure 1-S1) 149

could lead to enhanced discriminability in the large pupil condition. We reasoned that three 150
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population level factors could capture these effects: discrimination axis (signal) magnitude, 151

shared noise variance, and noise interference (Figure 4A). Discrimination axis magnitude is 152

directly related to d′2 (Figures 2B and 3C) and is measured using trial-averaged activity. Thus, 153

pupil-dependent changes in this value only reflect changes in the evoked response magnitude 154

of single neurons. Shared noise variance, on the other hand, is independent of trial-averaged 155

responses and reflects the strength of trial to trial variability. Noise interference, as we discuss 156

above, reflects the interaction between these two quantities. 157

Inspection of changes in these factors for individual stimulus pairs showed that discrimi- 158

nation magnitude increased in the large pupil condition and shared noise variance decreased 159

(Figure 4B, left). We used a regression model to determine the extent to which each could 160

explain changes in d′2 (Figure 4C, D). Consistent with a contribution to the change in discrim- 161

inability, a positive change in discrimination magnitude and a decrease in noise variance both 162

predicted an increase in d′2 (Figure 4C). Each of these factors contributed significantly to the 163

improved discriminability during high arousal conditions (Figure 4D, discrimination (signal) 164

magnitude: mean cross-validated R2 = 0.198, p = 0.000071, U = 3.97, shared noise variance: 165

mean R2 = 0.177, p = 0.000071, U = 3.97, n = 11 recording sessions, Mann-Whitney U test). 166

Noise interference, however, changed only marginally between arousal states and did not ex- 167

plain substantial variability in d′2 (mean cross-validated R2 = 0.007, p = 0.28, U = 1.08, n = 11 168

recording sessions, Mann-Whitney U test). 169

Both independent, single neuron variance, as well as noise correlations, could impact 170

discriminability. As validation that the our measurement of shared noise variance corresponded 171

primarily to modulation of noise correlations, and not changes in single neuron variance, we 172

simulated population activity. In the simulation, the mean and variance of single neurons was 173

matched to the values measured for the small and large pupil states, but noise correlations were 174

held fixed (Figure S9, Methods). These simulated data were unable to account for the actual 175

observed changes in d′2, while a simulation that also incorporated changes in noise correlations 176

accurately reproduced the raw data. Thus, a combination of changes in the trial-averaged, 177

evoked activity of single neurons and in correlated variability between neurons is needed to 178

explain decoding improvements. 179
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Figure 4. Arousal-dependent changes in both mean activity and trial to trial
variability impact stimulus discriminability. A. Cartoon schematic of typical arousal-
dependent modulation of population responses to two stimuli (blue and orange) in dDR space.
A change in mean response affects the distance between ellipsis centers, and a change in cor-
related variability affects their size. B. Scatter plot of signal magnitude (mean difference along
discrimination axis) versus shared noise variance for each stimulus pair. Color indicates small
versus large pupil conditions, randomly sub-sampled to facilitate visualization (n = 200/17,778
stimulus pairs). C. Linear regression was used to model changes in discriminability (d′2) as
a function of changes in signal magnitude, shared noise variance, and noise interference
(Eqn. 13). Each gray point represents the regression coefficient for data from one experiment
(n = 11). Error bars indicate standard error of the mean coefficient across experiments. D.
Cross-validated change in d′2 explained by each regressor (cR2, Methods) before (green /
raw) and after (grey / pupil correction) correcting for pupil-dependent changes in single neuron
evoked responses. Error bars represent standard error of the mean cR2 across experiments.
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Arousal-dependent changes in gain and correlated variability operate 180

on distinct timescales and neural populations 181

Studies of selective attention have shown that attention-related changes in response 182

gain of single neurons and the strength of correlated variability are related. In this framework, 183

changes in correlated variability reflect changes in the variance of coherent modulation of the 184

sensory gain of single neurons across the population.18,19 Thus, a single, shared mechanism 185

appears to mediate changes in both gain and correlation. We wondered if a single mechanism 186

also produced effects of arousal or if changes in gain and correlated variability were mediated 187

by separate mechanisms. 188

If arousal impacts single neuron activity and correlated variability via a single mechanism, 189

we reasoned that removing all pupil-dependent changes in single neuron spiking activity should 190

also remove population-level changes in both discrimination axis magnitude and shared noise 191

variance (Figure 4B). To test this hypothesis, we generated a pupil-corrected data set in which 192

all pupil-explainable response variability for each unit was subtracted from its raw response 193

(Eqn. 8). We then measured the pupil-dependent discrimination axis magnitude, shared noise 194

variance, and stimulus discriminability for the pupil-corrected data. The single neuron correction 195

abolished changes in discrimination axis magnitude, but changes in shared noise variance 196

were largely unaffected (Figure 4B). These results argue that arousal does not modulate 197

correlated variability by reducing shared fluctuations in arousal-dependent gain.18,19 Instead, 198

increased arousal suppresses an independent source of correlated variability. These separable 199

mechanisms are distinct from reports for selective attention, where changes in response gain 200

and correlated variability are thought to be produced by a single shared modulator. 201

To further distinguish mechanisms that impact discrimination magnitude and correlated 202

variability, we used a bandpass filter to partition the data into distinct temporal frequency bands 203

and measured noise correlations separately in each band (Figure 5A, B). Breaking the data into 204

frequency bands allowed us to identify the timescale over which the correlation effects operate. 205

Noise correlations were largest overall in low-frequency bands (< 0.5 Hz), reflecting slow, 206

coordinated fluctuations in the population activity.40 Pupil-indexed fluctuations in arousal occur 207

at this slow timescale. Thus, we expected the effects of coherent single neuron modulation 208

to be largest in this band. Indeed, the pupil correction reduced these slow noise correlations 209

significantly (p = 0.00003,W = 6, n = 25 recording sessions, Wilcoxon signed-rank test, Figure 210

5A) but not in the higher frequency bands, > 2 Hz. In contrast, arousal-dependent changes 211
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in correlation magnitude were restricted to the higher frequency bands, ranging between 0.5 212

and 25 Hz (Figure 5B, p = 0.019,0.002,0.007,0.00005,W = 76,51,63,11, n = 25 recording 213

sessions, Wilcoxon signed-rank test). Therefore, we conclude that the arousal-dependent 214

changes in correlated variability are due to modulation of a process that operates on a faster 215

timescale, distinct from the change in arousal itself. 216

If changes in correlated variability are in fact distinct from single neuron effects, the two 217

processes may also operate on different subpopulations of neurons. To determine if this was the 218

case, we compared the magnitude of pupil-dependent modulation observed in each cell with 219

the degree to which arousal state impacted noise correlations for that cell. Single cell effects 220

were quantified by the pupil modulation index (MI) (Eqn. 4). A value of MI= 1 indicated a unit 221

that only responded when pupil was large and MI= 0 indicated no change in responsiveness 222

between large and small pupil. While MI was able to predict noise correlations between two 223

units, it contained no information about the arousal-dependent change in noise correlations 224

(Figure 5C, D). Thus, in addition to acting on distinct timescales, each process also operates on 225

unique populations of neurons in A1, confirming that single neuron changes are distinct from 226

changes in correlated variability. 227
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Figure 5. Arousal-dependent changes in evoked response magnitude and corre-
lated variability operate on distinct timescales and neural populations. A. Noise
correlations, computed with and without pupil correction, split into six non-overlapping tem-
poral frequency bands. To minimize bias from one recording session, noise correlations were
averaged across neuron pairs within session before measuring significance of the difference
between conditions (***p < 0.001, **p < 0.01, *p < 0.05, Wilcoxon signed-rank test, n = 25
recording sessions). Shading indicates standard error across recording sessions. B. Pupil-
corrected noise correlations measured after splitting data by median pupil size, plotted as in
A. C. Left: Heatmap of mean noise correlations (using 4Hz temporal bins, as in Figure S1),
grouped into 20 evenly spaced M bins for each pair of units (, j). Right: Regression coeffi-
cients, predicting overall noise correlations from M of individual neurons (M and Mj) and their
interaction (M ∗Mj). Gray dots represent single recording sessions; error bars represent 95%
confidence intervals across sessions. D. Same as C but for change in noise correlations (Δ noise
correlations) between small and large pupil.

Arousal-dependent reduction of correlated variability is low dimen- 228

sional 229

Having determined that arousal-dependent changes in correlated variability operate 230

through a distinct mechanisms from changes in individual neuron excitability, we finally sought 231

to determine the dimensionality of the mechanism producing the correlations. Specifically, we 232

determined if changes in noise correlations could be described by a low dimensional latent 233

process, or if they reflected more complicated modulation of high-dimensional neural coupling 234
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across the population. For each session, we computed the axis of maximal change in noise 235

correlations between large and small pupil (Figure 6A-D). In most cases, this pupil modulation 236

space was low-dimensional; in 9/11 recording sessions, we found only one significant dimension 237

along which noise correlations changed between large and small pupil (p < 0.05, permutation 238

test, Methods). This dimension was consistently aligned with the first principal component of 239

the pooled noise data (6E, F), suggesting that arousal modulates correlated variability along, 240

low-dimensional, high variance dimensions in the data. 241

Given that arousal-dependent changes are usually restricted to a single dimension, we 242

hypothesized that their impact on discriminability will depend on how well that axis aligns 243

with the sensory discrimination axis. To test this, we compared the pupil modulation axis to 244

the sensory discrimination axis (Δμ) for each stimulus pair. Indeed, this was the case. For 245

pairs of stimuli where the cosine similarity between Δμ and pupil modulation axis was high, 246

we observed that the effect of correlated variability changes on d′2 were larger (Figure 6G, 247

p = 0.028,W = 4, n = 9, Wilcoxon signed-rank test). 248

Based on these results, we conclude that arousal-dependent changes in correlated 249

variability are restricted to a relatively low-dimensional subspace. These changes increase 250

sound discriminability when it is aligned with the discrimination axis, a scenario that only occurs 251

for a subset of sensory discriminations. 252
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Figure 6. Pupil-related changes in noise correlations are low-dimensional and pre-
dict changes in stimulus discriminability. A. Matrix of pairwise noise correlations between
all units during the small pupil condition in one recording session. B. Same as in A for large
pupil condition. C. Change in noise correlations, computed as the difference between ma-
trices in A and B. Color scale shared between panels A-C. D. Eigenvalues of the difference
matrix in C (orange). The first eigenvalue corresponds to the pupil modulation axis. Blue line
shows the noise floor, computed by shuffling pupil size before classifying large vs. small pupil
conditions. Only sites with at least one significant eigenvalue were included subsequently in
panels F/G (9/11 sites, p < 0.05, permutation test). E. Scree plot shows variance explained
ratio for each principal component. Orange shading indicates the portion of variance along
each PC that can be attributed to the pupil modulation axis. The large orange component in
the first position indicates that the pupil modulation axis largely aligns with the first principal
component. F. Scatter plot compares fraction of total variance in the population activity ex-
plained by the modulation axis (-axis) against the ratio of modulation axis variance to PC1
variance (y-axis), i.e., the ratio between heights of the orange and grey bars for PC1 in panel
E. Example site from A-E is shown in orange. G. Change in d′2 between pupil conditions after
performing single neuron pupil correction for each site. Mean change is computed across
stimulus pairs after first grouping each pair by the alignment of the pupil modulation axis with
its discrimination axis (median split between low and high alignment). Stimulus pairs with
high alignment (measured with cosine similarity) showed greater discrimination improvements
(μhgh = 0.099 ± 0.042, μo = 0.057 ± 0.041, p = 0.028, n = 9, Wilcoxon signed-rank test).

Discussion 253

Previous studies have suggested that behavior-dependent modulation of neural popu- 254

lation coding operates in a low-dimensional space.18,19,21,22,40,41 That is, signals reflecting 255

behavioral state are well-described by processes that modulate the activity of many neurons 256

coherently and thus produce correlated variability in sensory responses. However, most pre- 257

vious work has utilized relatively small, focused stimulus sets. This raises questions about 258
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whether the observed low-dimensional processes are a consequence of the stimuli tested, or 259

if they are a general feature of state-dependent modulation. These questions are critical for 260

understanding population coding of sensory stimuli. Theoretical studies have long shown that 261

correlated variability can impact coding accuracy, but only if it aligns with the sensory tuning of 262

neurons in the population.27 Thus, the dimensionality of the mechanisms driving correlated 263

variability and how they interact with sensory selectivity is critical for understanding their 264

impact on sensory processing. 265

In the case of pupil-indexed arousal, we found that correlated activity is modulated in a 266

low-dimensional subspace of primary auditory cortex (A1) which we found to be distinct from 267

the arousal-dependent changes in single neuron responses. These results were consistent 268

across a diverse set of natural sound stimuli. The effect of arousal on neural discrimination of 269

sounds varied substantially with the sound stimulus, as predicted for a low-dimensional signal 270

interacting with high-dimensional stimulus-evoked activity. 271

Effects of shared intrinsic variability on discriminability are stimulus- 272

dependent 273

Correlated, intrinsic variability within neural populations is ubiquitous in cortex. Even 274

before this phenomenon was observed experimentally, substantial efforts were made to 275

develop a theoretical understanding of how correlated activity might affect coding by neural 276

populations.26,37,42–47 This early work established that correlated variability can interfere 277

with the brain’s ability to accurately discriminate sensory stimuli. Therefore, experimental 278

characterization of this phenomenon is critical to fully understand neural population codes. 279

Although evidence for intrinsic correlation is widespread, experimental studies have 280

provided conflicting evidence as to whether or not it does in fact interfere with population 281

coding.20,25,28–30,32,38,39 There are at least two reasons why the reported effects of correlated 282

variability might vary across studies. First, in some cases activity along dimensions containing 283

interfering noise could have very low variance. In this case, measuring the noise reliably would 284

require recording large amounts of data, both over many neurons and over many trials, a 285

methodology that has only recently become feasible.32,38,39 A second possibility is related to 286

the fact that the impact of correlated noise depends on the tuning of neurons in the population 287

being read out and its relationship with the noise space.26,28,30 In this case, discrepancies in 288

previous work might be explained by differences in the neural populations that were sampled 289
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or in the stimuli that were tested. Because the effects of intrinsic noise may depend on the 290

stimuli that are presented, it is important to characterize coding accuracy across diverse sets 291

of stimuli. Indeed, our results showed that the effects of correlated variability on coding are 292

highly dependent on the stimuli tested. 293

Because there is a trade-off between the number of stimuli that can be presented and the 294

number of times that each can be repeated during a single recording session, questions about 295

stimulus-dependent changes in population coding are difficult to completely address in a single 296

study. Unlike recent work,32,38,39 we measured neural responses to a large set of stimuli over 297

a relatively small number of repeats and neurons. Thus, we could not measure low-variance 298

dimensions and draw strict conclusions about the presence (or absence) of information-limiting 299

noise.26 Instead, by developing a novel dimensionality reduction approach (dDR), we were 300

able to reliably estimate the interaction between the dominant, high-variance noise dimension 301

and sensory discrimination across a large acoustic stimulus space. This approach revealed 302

substantial variability of arousal dependent changes in coding within each recording site. This 303

highlights the practical benefit of dimensionality reduction techniques for studying neural 304

population dynamics across a diversity of stimulus and behavioral contexts.48
305

State-dependent coding in auditory cortex 306

It is increasingly clear that neural activity in primary sensory regions of the brain is 307

significantly modulated by non-sensory variables, including arousal.2,13,17,40,49 Arousal here 308

refers to spontaneous changes in alertness as measured by pupil diameter, even in the absence 309

of a behavioral task.49 Similar to previous work, we find that increased arousal is associated 310

with enhanced excitability and reduced noise correlations in A1.2,13,31 These effects boost the 311

neural signal to noise ratio in V117 and improve population coding accuracy of tonal stimuli in 312

A1.13
313

Building on this previous work, we explored the effects of arousal on population coding 314

accuracy across a large space of natural sounds. Consistent with prior results, increases in pupil- 315

indexed arousal led to improved discriminability between sounds on average. However, the 316

relative magnitude of this improvement varied substantially across stimuli. Improvements were 317

largest when correlated variability interfered with sensory discrimination. Thus, a suppression 318

of correlated variability and increase in evoked response rates during high arousal states may 319

gate behavioral states that require improved perceptual discrimination, like selective attention. 320
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This strong stimulus dependence highlights the importance of a systematic exploration 321

of state-dependent changes in neural coding across the sensory response space. Parametric 322

stimuli might be used to more systematically probe sound feature representations across a 323

range of behaviorally relevant stimuli. For example, one study of auditory processing began to 324

address this question in anesthetized animals.23 In this work, Kobak et al. measured population 325

coding in A1 of sounds that varied along two dimensions: Inter-aural level (ILD) and absolute 326

binaural level (ABL). By inducing different states of cortical activation with urethane anaesthesia, 327

the authors demonstrated that in the awake (desynchronized) state, noise and signal subspaces 328

shift to become orthogonal, thereby facilitating accurate encoding across both ILD and ABL. 329

Extending this approach to spectro-temporally varying and behaviorally relevant naturalistic 330

stimuli50 will be critical for a complete understanding of state-dependent population coding. 331

Separate mechanisms drive arousal-dependent changes in single neu- 332

rons and correlated neural variability 333

Recent studies of selective attention have suggested that correlated variability results 334

from the coherent modulation of many neurons by an intrinsic behavioral state variable.18–20
335

In a recent study by Denfield et al., macaques were trained on a visual change-detection 336

task in which the stability of spatial selective attention was manipulated between behavioral 337

blocks.19 Because the gain of evoked responses in visual cortex is known to be modulated by 338

attention,51 the authors proposed that the magnitude of correlated variability should be highest 339

when attention itself was most variable, as changes in gain are shared across neurons within 340

the receptive field. Indeed, when animals were required to switch attention between multiple 341

locations within a behavioral block, noise correlations were strongest. This idea of correlations 342

produced by a shifting spotlight of attention is consistent with previous characterizations of 343

neural population activity and attention18 and agrees well with theoretical work.20,21 These 344

findings offer a parsimonious explanation for why gain changes are accompanied by a reduction 345

in noise correlations during traditional cued change-detection tasks, where attention is focused 346

stably on a single spatial location.16
347

Unlike the case of visual selective attention, we found that arousal-dependent modulation 348

of evoked rates and noise correlations in auditory cortex could be fully dissociated, and thus 349

did not arise from a common signal. Modulation of single neuron activity was slow, on the order 350

of many seconds. These slow changes may be analogous to previously described drift signals 351
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in cortex.18,22 Correlated variability between neurons, however, also operated on a faster 352

timescale, from tens to hundreds of milliseconds. The magnitude of these faster correlations 353

was modulated by the slow arousal signal, but we could not predict changes in correlated 354

variability from modulation of single neurons. Instead, neurons undergoing slow changes 355

in excitability and those undergoing modulation of faster noise correlations comprised two 356

independent subpopulations. 357

Although it was not feasible to directly isolate the circuitry underlying these distinct effects 358

in the current study, we propose that they may arise through a combination of neuromodulation 359

and intracortical feedback. Several studies have shown a strong correlation between slow 360

fluctuations in pupil diameter and brain-wide release of norepinephrine and acetlycholine,52
361

making them good candidates for mediating the slow changes in response baseline and gain 362

across individual neurons. The decrease in correlated activity, on the other hand, may arise 363

due to modulation of feedback from other cortical areas that are themselves targeted by the 364

same neuromodulatory signals. 365

Intracortical pathways to auditory cortex have been identified from multiple areas, includ- 366

ing visual,53 motor54 and prefrontal cortex.55 These inputs can activate inhibitory networks 367

that desynchronize local network activity, and modulating their strength could produce the 368

correlation effects observed in the current study. Given the diversity of these intracortical 369

signals, it might seem surprising that the arousal-related changes reported here should occur 370

in such a low-dimensional space. Further investigation with selective control of feedback from 371

different cortical areas will determine if, in fact, the impact of signals from these different 372

cortical areas can be dissociated in A1. 373

Materials and Methods 374

Surgical procedure: 375

All procedures were performed in accordance with the Oregon Health and Science 376

University Institutional Animal Care and Use Committee (IACUC) and conform to standards of 377

the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The 378

surgical approach was similar to that described previously.2,9,56,57 Five young adult male ferrets 379

were acquired from an animal supplier (Marshall Farms). Head-post implantation surgeries 380

were then performed in order to permit head-fixation during neurophysiology recordings. Two 381
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stainless steel head-posts were fixed to the animal along the midline using UV-cured dental 382

composite (Charisma) or bone cement (Palacos), which bonded to the skull and to stainless 383

steel screws that were inserted into the skull. After a two-week recovery period, animals were 384

habituated to a head-fixed posture and auditory stimulation. At this point, a small (0.5 - 1 mm) 385

craniotomy was opened above primary auditory cortex (A1) for neurophysiological recordings. 386

Acoustic stimuli: 387

Digital acoustic signals were transformed to analog (National Instruments), amplified 388

(Crown), and delivered through a free-field speaker (Manger) placed 80 cm from the animal’s 389

head and 30°contralateral to the the hemisphere in which neural activity was recorded (Figure 390

1). Stimulation was controlled using custom MATLAB software (https://bitbucket.org/lbhb/ 391

baphy), and all experiments took place inside a custom double-walled sound-isolating chamber 392

(Professional Model, Gretch-Ken). 393

Natural sounds stimuli were presented in four different configurations. Set 1 consisted 394

of 93, 3-sec samples (2.5 sec ISI, n = 3 sites), set 2 consisted of 306, 4-sec samples (1 sec 395

ISI, n = 14 sites), set 3 consisted of 306, 1-sec samples (0.5 sec ISI, n = 6 sites), and set 4 396

consisted of 2, 3-sec samples of ferret vocalizations (2.5 sec ISI, n = 2 sites). In sets 1-3, the 397

stimulus sets contained species conspecific and heterospecific vocalizations, speech, music, 398

and environmental sounds chosen to sample diverse spectro-temporal statistics.35 All stimuli 399

were presented at 65 dB SPL. During every experimental session, a subset of samples were 400

repeated at least ten times (set 1: 3 samples, set 2: 18 samples, set 3: 18 samples, set 4: 401

all samples), while the remainder were played only once. In order to study the trial-to-trial 402

variability in neural responses, only the high-repeat sounds were included in this study. The 403

order in which stimuli were presented was generated pseudo-randomly. Stimuli were played 404

continuously until all sound samples in the library had been presented. In the case of set 1, the 405

entire stimulus set was repeated 2-3 times. This meant that experiments lasted approximately 406

40 minutes. The full sound library can be accessed at https://bitbucket.org/lbhb/baphy). 407

Some of data used in this study has been published previously.2,58
408

Neurophysiology: 409

Upon opening a craniotomy, 1 - 4 tungsten micro-electrodes (FHC, 1-5 MΩ) were in- 410

serted to characterize the tuning and response latency of the region of cortex. Sites were 411
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identified as A1 by characteristic short latency responses, frequency selectivity, and tonotopic 412

gradients across multiple penetrations.59,60 Subsequent penetrations were made with a single 413

(64-channel) or dual shank (128-channel) silicon electrode array.34 Electrode contacts were 414

spaced 20 μm horizontally and 25 μm vertically, collectively spanning 1.05 mm of cortex. 415

On each consecutive recording day, we changed the location of the electrode penetration to 416

access fresh cortical tissue, expanding the craniotomy as necessary. Data were amplified (RHD 417

128-channel headstage, Intan Technologies), digitized at 30 KHz (Open Ephys61) and saved to 418

disk for further analysis. 419

Spikes were sorted offline using Kilosort62 or Kilosort2 (https://github.com/MouseLand/ 420

Kilosort2). Spike sorting results were manually curated in phy (https://github.com/ 421

cortex-lab/phy). For all sorted and curated spike clusters, a contamination percentage 422

was computed by measuring the cluster isolation in feature space. All sorted units with contam- 423

ination percentage less than or equal to 5 percent were classified as single-unit activity. All 424

other stable units that did not meet this isolation criterion were labeled as multi-unit activity. 425

Pupillometry: 426

During neurophysiological recordings, video of the ipsilateral pupil (relative to the record- 427

ing hemisphere) was collected using an open source camera (Adafruit TTL Serial Camera) 428

fitted with a lens (M12 Lenses PT-2514BMP 25.0 mm) whose focal length allowed placement 429

of camera 10 cm from the eye. Contrast was increased using infrared illumination. Ambient 430

light levels were fixed for each experiment at roughly 1500 lux to provide maximum dynamic 431

range of pupil size.2 Pupil size was measured offline by fitting an ellipse to each video frame 432

using using a custom machine learning algorithm (Python and Tensorflow). The minor axis of 433

the fit ellipse was extracted and saved for analysis with neurophysiological data. Blinks were 434

detected and excluded as in2 and pupil data was shifted by 750 ms relative to spike times in 435

order to account for the lagged relationship between changes in pupil size and neural activity 436

in auditory cortex and to allow for comparison with previous research.31
437

The pupil tracking algorithm itself utilized a deep learning approach. Our model architec- 438

ture was based on DenseNet201,63 which is available through Keras (https://keras.io/). In 439

order to transform the output of the model to pupil ellipse predictions, we added a single global 440

pooling layer and a final prediction layer in which five pupil ellipse parameters (x-position, 441

y-position, minor axis, major axis, and rotation) were fit to each video frame. In order to initial- 442
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ize model weights, the model was pre-trained on ImageNet,64 then fine-tuned using roughly 443

500 previously analyzed, nonconsecutive frames from video of the pupil of multiple different 444

ferrets (data from2). Qualitatively, after this first round of training the model performed well, 445

even on novel video frames of pupil from new animals. However, in cases where the pupil 446

video quality was poor, or differed substantially from the video frames in our training data 447

set, we noticed failures in the model predictions. To further improve the model, we employed 448

an active learning procedure. For each new analyzed video, pupil ellipse fits were analyzed 449

qualitatively by experimenters. If the fit quality was deemed poor, predictions for these frames 450

were manually corrected and added to the training data set. The model was then retrained and 451

the analysis rerun. The network became robust to varying levels of video quality and performed 452

consistently without the need for user intervention. The code for this analysis is available at 453

https://github.com/LBHB/nems_db. 454

Because arousal was not explicitly controlled, identical arousal states were not sampled 455

from day to day, between different animals, or between different stimulus pairs within the 456

same experimental session. To control for this variability, we created a normalized metric of 457

pupil variance for each stimulus, and then computed the mean of this variance metric for each 458

recording session. For each stimulus pair, trials were split in half based on median pupil size 459

across all trials. Next, the difference of mean large pupil size and mean small pupil size was 460

normalized by the standard deviation of pupil across the entire experiment. Therefore, for a 461

stimulus pair that sampled a large range of pupil states (relative to pupil during that particular 462

recording session) this metric was high. Finally, we averaged across all stimulus pairs at a 463

recording site and compared this mean across recording sessions (Figure S7). 464

Pupil-dependent GLM: 465

In order to characterize the dependence of first-order response statistics on pupil-indexed 466

arousal, we built a state-dependent generalized linear model of sound-evoked activity. For 467

each recorded unit, , the input to this model was defined as the peri-stimulus time histogram 468

(PSTH) response averaged over all stimulus repetitions (r0,(t)). The predicted firing rate was 469

calculated by scaling the PSTH by a pupil-dependent multiplicative and additive factor to model 470

pupil-dependent changes in gain and baseline firing rate over time (Eqn. 1). To account for a 471

possible nonlinear relationship between pupil size and neuromodulation, the pupil signal was 472

first passed through a static sigmoid nonlinearity, F (double exponential65). The parameters of 473
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this nonlinearity, as well as the gain (β0) and baseline (β1) coefficients were fit independently 474

for each cell using 10-fold jackknifed cross validation using the Neural Encoding Model System 475

(NEMS, https://github.com/LBHB/NEMS). 476

r̂(t) = β0
�

1 + F
�

p(t)
�

r0,(t)
�

+ β1F
�

p(t)
�

(1)

The sigmoid transformation applied to the pupil improved model performance, but made 477

it difficult to interpret the gain (β0) and baseline (β1) parameters directly. To assess the relative 478

magnitude of pupil effects on baseline and gain, we computed the unique modulation of firing 479

rate due to each, respectively, as the mean difference in prediction between large and small 480

pupil conditions: 481

Mβ0 = β0
�

< F(prge(t)) > − < F(psm(t)) >
�

(2)

Mβ1 = β1
�

< F(prge(t)) > − < F(psm(t)) >
�

(3)

where <> indicates the mean over time and rge / sm refer to median splits of pupil 482

size across the experimental session. 483

To quantify overall pupil-dependent modulation without differentiating between baseline 484

and gain, we measured an overall pupil modulation index (M). M was defined by as the mean 485

sound-evoked response when pupil was large minus the mean response when pupil was small, 486

normalized by the sum of these two quantities. Large and small trials were defined based on a 487

median split of pupil size across the entire recording session. 488

M =
r̄rge − r̄sm

r̄rge + r̄sm
(4)

Noise correlations: 489

Pairwise noise correlations were measured by grouping spike counts into 250 ms bins, 490

extracting only evoked periods (epochs when sound stimuli were playing), and computing 491

Pearson’s correlation between all pairwise combinations of z-scored spike counts. Z-scores 492

were calculated for each stimulus independently, as in Eqn. 5, where r(t) is the single trial 493

response, r0 is the trial averaged response, and σ is the standard deviation of spike counts 494

across repetitions. Therefore, the z-scored spike counts Z(t) of each neuron  for each stimulus 495
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s had mean zero and standard deviation one. 496

Z(t) =
r(t) − r0,(s)

σ(s)
(5)

Noise correlations were also measured after first band-pass filtering spike counts. In order 497

to achieve high frequency resolution, data were binned at 100 Hz (10 ms bins) for this analysis. 498

To band-pass filter the data, we first computed the Fast Fourier transform of each unit’s spike 499

counts. Next, in the frequency domain we used a Tukey window to extract the frequencies 500

of interest. Finally, we inverted the modified signal back into the time domain, z-scored the 501

data, and computed Pearson’s correlation as above. For pupil-corrected noise correlations, we 502

performed the same procedure after first performing the pupil-correction (see below). 503

Pupil-correction: 504

To remove changes in firing rate that were associated with pupil, we regressed out all 505

stimulus-independent variability that could be explained with pupil size. We performed this 506

correction on a per-neuron, per-stimulus basis to completely remove pupil-associated changes 507

in firing. 508

For each neuron () and stimulus (s) the mean response across all trials was measured 509

(r̄,s) and subtracted from the true response (r,s, Eqn. 6). A linear regression model was used 510

to predict to the residual variability in firing rate with pupil size (r̂resd,s , Eqn. 7). The prediction 511

of this model was then subtracted, and the remaining, pupil-corrected, trial to trial variability 512

was added back to the mean stimulus response (Eqn. 8). 513

rresd,s = r,s − r̄,s (6)

r̂resd,s = β1p(t) + β0 (7)

rcorr,s = r̄,s +
�

rresd,s − r̂resd,s
�

(8)
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Pairwise stimulus discrimination: 514

Natural sound samples were broken into non-overlapping 250 ms segments, similar to 515

the procedure followed by Pachitariu et al., 2015.66 In order to obtain cross-validated estimates 516

of stimulus discriminability (Figure S2), we required that each stimulus be repeated at least 20 517

times. This was the case for 11 / 25 recording sites. These 11 recording sites were collected 518

from four different animals. For the remaining sites (which contained only 10 repetitions per 519

stimulus), we could not perform cross-validation. Therefore, for all analyses included in the 520

main text in which we report neural discriminability (d′2) estimates (Figures 2, 3, 4, and 6) 521

only the high-repetition count recording sessions were included. However, we repeated key 522

analyses using all 25 recording sessions without performing cross-validation and found that 523

results were largely consistent with the more rigorous approach (Figure S8). 524

For each pair of stimulus segments we extracted the N neuron X k trial response matrices, 525

A and B. Because the number of recorded neurons was greater than the number of stimulus rep- 526

etitions, we performed dDR to preserve only significant dimensions of the population response 527

(see following section and Figures S3/S4). This allowed us to accurately estimate the population 528

statistics. We quantified encoding accuracy in this reduced-dimensionality space by measuring 529

neural stimulus discriminability, d′2, the discrete analog of Fisher information:26,27,32,37–39
530

d′2 = ΔμT−1Δμ = ΔμTwopt (9)

where Δμ represents the vector connecting the mean ensemble responses to stimulus A and 531

stimulus B,  = 1
2 (A + B) represents the mean noise-covariance matrix, and wopt is the opti- 532

mal decoding axis, i.e. the vector orthogonal to the optimal linear discrimination hyperplane 533

in state-space. In practice, for our high repetition count data set we estimated wopt using 534

50-percent of trials (training data) then projected the held out 50-percent of trials (test data) 535

onto this vector and measured discriminability. For a detailed schematic of this procedure, see 536

Figure S2. Pupil-dependent measurements of d′2 followed an identical procedure, but before 537

measuring discriminability, the test data was first split in half based on median pupil size. 538

Throughout this work, we describe stimulus discriminability as a function of the relation- 539

ship between the signal and noise subspace. To quantify this relationship, we defined the 540

following two axes which we found to be critical for understanding encoding accuracy: 541

Discrimination axis magnitude (|Δμ|): For a given pair of stimuli A and B, we defined the 542

discrimination axis (i.e. the axis containing sensory information) to be the vector Δμ. When 543
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two stimuli drove very different population activity, the magnitude of this vector, |Δμ|, was 544

large and discriminability was high. 545

Noise interference (|cos(θΔμ,e1)|): The structure of trial to trial variability in responses 546

can vary depending on the stimulus.25,67,68 Therefore, within the reduced dimensionality dDR 547

space (see below) for each pair of stimuli, we defined the correlated variability axis, e1, as the 548

first eigenvector of the average covariance matrix,  = 1
2 (A + B). We then asked how this 549

axis interacted with the signal by measuring the cosine similarity between Δμ and e1. Thus, 550

when the two were perfectly aligned our measure of noise interference was equal to one and 551

when they were perfectly orthogonal, interference was zero. 552

To quantify the dependence of d′2 and Δd′2 on these two axes, we used the following 553

linear regression models (Eqns. 10, 11). All variables were z-scored prior to model fits. 554

d′2 = β0 + β1|cos(θΔμ,e1)| + β2|Δμ| + β3|cos(θΔμ,e1)||Δμ| (10)

Δd′2 = β0 + β1|cos(θΔμ,e1)| + β2|Δμ| + β3|cos(θΔμ,e1)||Δμ| (11)

Decoding-based Dimensionality Reduction: 555

During our experiments we typically recorded from between 20 and 60 units simulta- 556

neously at a single recording site (on one 64-channel probe shank). However, at most, we 557

repeated each individual stimulus only 24 times. Therefore, because the number of neurons 558

was generally greater than the number of trials, estimation of the covariance matrix for a 559

particular stimulus, A (A), was unreliable (Figure S4).32 This poses a challenge for estimating 560

neural discriminability as this process depends on accurate estimation of . One technique that 561

has been proposed to help deal with such limitations is dimensionality reduction.32
562

Because we were interested specifically in studying neural discriminability, we devel- 563

oped a decoding-based Dimensionality Reduction (dDR) approach whereby we reduced our 564

N-dimensional space, on a per-stimulus pair basis, to just two dimensions containing the most 565

critical information for estimating stimulus discriminability: The sensory discrimination axis, 566

Δμ, and the global noise axis, which we defined as the first principal component of the pooled 567

noise data over all stimuli and neurons (raw spike counts after subtracting the mean stimulus 568

response from each neuron).23 Thus, the noise axis was fixed between stimulus pairs but 569

Δμ was not. We defined dDR1 = Δμ and dDR2 as the axis orthogonal to Δμ and in the plane 570
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spanned by Δμ and the noise axis. We illustrate this process graphically (Figure S3). Analy- 571

sis of neural discriminability using dDR in simulated data sets (Figure S4) demonstrated the 572

efficacy of this method both in preventing over-fitting and in facilitating accurate estimation 573

of discriminability. Furthermore, though it is not a focus of the current work, we demonstrate 574

that although this method only explicitly preserves the first noise principal component, it is still 575

capable of detecting information limiting correlations26 that recent work has suggested might 576

be restricted to relatively low variance dimensions of the data.32,38
577

Pupil-dependent changes in stimulus discriminability 578

d′2, measured across pupil states, could vary greatly across the sensory response. There- 579

fore, in order to measure pupil-dependent changes in coding accuracy, we used a normalized 580

metric, Δd′2 that allowed us to directly compare relative changes in discriminability for different 581

stimulus pairs and recording sites. To measure this, we computed a pupil-dependent modulation 582

index of d′2. For each stimulus pair, Δd′2 was defined as the d′2 measured during large pupil 583

trials minus d′2 for small pupil trials, normalized by the sum of these two quantities. 584

Δd′2 =
d′2rge − d

′2
sm

d′2rge + d
′2
sm

(12)

Contribution of single neuron and correlated variability to changes in 585

discriminability 586

We observed that pupil modulated both the mean distance between stimuli (discrimi- 587

nation axis / signal magnitude) and the amount of trial to trial variability in the response to 588

the same stimulus. To determine which contributed to pupil-dependent changes in d′2, we 589

performed a linear regression between Δd′2 and the pupil-dependent changes in both signal 590

magnitude and shared noise variance (Eqn. 13). We also included an interaction term to 591

account for changes in the alignment of the noise and signal axes between arousal states. Each 592

of these statistics was calculated on a per stimulus-pair basis, and the models were fit per 593

experimental session to prevent bias arising from any differences between experiments. 594

ˆΔd′2 = β0 + β1ΔSignal magnitude+ β2ΔShared noise variance+ β3ΔNoise interference (13)
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595

In order to determine if each individual variable explained significant variability in Δd′2, 596

we created three different single variable regression models, one for each of the population 597

statistics in the full model (Eqn. 13). We then measured cross-validated estimates of R2 for 598

each (cR2). To do this, models were fit on 90-percent of the data and evaluated on the 599

remaining 10-percent. We used jackknifing so that cross-validated predictions tiled the entire 600

dataset. A single cR2 value was measured for each experiment using this prediction. Finally, 601

to determine if the effect of a given predictor was consistent across experiments, we tested 602

whether the distribution of cR2 values across experiments was significantly different than 603

zero. 604

Response simulations: 605

To dissociate arousal-dependent modulation of single neuron response statistics, such as 606

response gain, from correlated variability effects, we followed a procedure similar to that in 607

Cohen et al., 2009.16 Simulated data sets were generated independently for both large and 608

small pupil conditions. In the independent variability simulation, the mean and variance of 609

single neurons were allowed to vary between large and small pupil while correlations between 610

neurons were fixed. In the full simulation, correlations between neurons were also allowed to 611

change between large and small pupil. 612

Independent variability simulation: Pupil-dependent mean and variance of single neurons 613

were measured using the raw data. Next, we built covariance matrices, nd.,rge and nd.,sm, 614

where the off-diagonal elements in each pupil condition were fixed over all pupil conditions and 615

the diagonal elements of each matrix were set to the measured variance in each respective 616

pupil condition. We simulated population responses, Rnd by drawing trials from a multivariate 617

Gaussian distributions as follows: 618

Rnd.,rge = N (μrge,nd.,rge), Rnd.,sm = N (μsm,nd.,sm) (14)

Full simulations: Pupil-dependent single neuron statistics (mean and variance) and 619

correlated variability between neurons (off-diagonal elements of the covariance matrix) were 620

measured using the raw data. We used these values to define covariance matrices ƒ,rge 621

and ƒ,sm where all elements of the matrices were set based on their covariance values 622

in each respective pupil condition. We simulated full population responses, Rƒ as above by 623
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drawing trials from a multivariate Gaussian distributions. All simulations were performed on a 624

per-stimulus basis. 625

Identification of noise correlation modulation axis 626

We identified the axis in state space along which noise correlations were most modulated 627

by pupil. First, we measured large and small pupil noise covariance matrices. Noise covariance 628

matrices were defined as the covariance matrix of the z-scored spiking activity (z-scored on 629

a per-stimulus basis). We then set the diagonal of this matrix equal to zero, because for 630

this analysis we were interested only in capturing shared patterns of variability. Finally, we 631

computed the difference covariance matrix (small pupil matrix minus large pupil matrix) and 632

performed an eigen-decomposition. The largest eigenvalue corresponded to the axis along 633

which noise correlations changed most between the two pupil states. Significance of this axis 634

was evaluated with a permutation test. 635

Statistical analyses 636

Our data followed a nested structure; multiple cells were recorded from the same animal 637

and many different stimuli were presented during each experimental session. Therefore, it 638

is possible our results could be biased by differences between animals and/or experimental 639

recording session. To account for this, in all of our statistical tests we took one of the following 640

two approaches: (1) Averaged metrics across cells (or pairs of cells) and sound stimuli within 641

a recording session before performing statistical tests or (2) Performed statistical tests using 642

hierarchical bootstrapping.69 Although each approach reduces statistical power relative to 643

treating each individual measurement as wholly independent, they provide conservative 644

estimates of p-values and reduce the chance of detecting false positives.69 The only exception 645

to this approach was in the estimates of pupil-dependent effects on evoked firing rates in single 646

neurons shown in Figure S1. 647

For estimating significance of pupil-effects in single neurons, we performed a jackknifed 648

t-test for each individual neuron. Data were split into 20 non-overlapping estimation / validation 649

sets that together tiled the entire experimental session. For each validation set, a prediction 650

correlation was computed for both the full pupil-dependent GLM and the pupil-shuffled GLM. 651

Cells where the mean pupil-dependent model performance was 2 standard errors greater than 652

the mean shuffled model performance (p ≤ 0.05) were considered to have significant pupil 653

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.08.31.276584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276584
http://creativecommons.org/licenses/by-nc/4.0/


effects. 654

For all statistical tests measuring large vs. small pupil effects where we first averaged 655

results within recording session, we performed a two-tailed Wilcoxon signed-rank test. For each 656

test, we report the test statistic, W, the p-value, and the exact n number of recording sessions 657

used to perform the test. In cases where we performed a hierarchical bootstrap, we report the 658

direct bootstrap probability of the null hypothesis.69 In both cases, we also provide the mean 659

and standard error of the number of measurements per recording session 660

To quantify patterns in d′2 and Δd′2 heatmaps, we performed standard linear regression on 661

a per-recording site basis using the statsmodel package for Python (https://www.statsmodels. 662

org/stable/index.html). To determine the significance of regression coefficients at the group 663

level, we performed a Mann-Whitney U test to determine if the parameter distribution over 664

recording sites was significantly different than zero. For each test, we report the test statistic, 665

U, the p-value, and the exact n number of recording sessions used to perform the test. 666

To measure the significance of the correlation between pupil-dependent changes in 667

stimulus discriminability and pupil variance per recording session, we performed a permutation 668

test. We randomly shuffled our distribution of mean Δd′2 across recording sites and computed 669

the correlation of these re-sampled values with pupil variance. This was repeated 1000 times 670

in order to calculate a p-value, which is reported in the text along with the true measured 671

correlation coefficient. 672

Finally, to determine if the measured noise correlation modulation axis for a given 673

recording session was significant, we performed a permutation test. For each recording 674

session, pupil size was shuffled in time before classifying trials as large or small pupil. After 675

shuffling, spike covariance matrices were measured for large and small pupil trials and an 676

eigen-decomposition was performed on the difference between these matrices. This was 677

repeated 20 times and the mean / standard error of the resulting eigenvalues was stored. 678

Significant dimensions were those in which the actual measured eigenvalue was 2 standard 679

errors greater than the mean shuffled value. 680

Glossary 681

• Discrimination/signal axis (Δμ): Vector connecting the mean population response to 682

stimulus A and stimulus B. 683

• Pooled noise data: All single trial data after subtracting off mean stimulus responses from 684
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each neuron. 685

• Global noise axis: First principal component of pooled noise data. 686

• Correlated variability axis (e1): Stimulus-pair specific estimate of noise axis. First principal 687

component of noise data pooled across the two stimuli within dDR space. 688

• Optimal decoding axis (wopt): Axis orthogonal to the optimal linear discrimination bound- 689

ary in dDR space. 690

• Discrimination axis magnitude (|Δμ|): Vector magnitude of the discrimination axis. 691

• Noise interference (|cos(θe1,Δμ)|): Cosine similarity between the correlated variability axis 692

and discrimination axis. 693
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